A Novel Ensemble-Learning-Based Convolution Neural Network for Handling Imbalanced Data

被引:1
|
作者
Wu, Xianbin [1 ]
Wen, Chuanbo [1 ]
Wang, Zidong [2 ]
Liu, Weibo [2 ]
Yang, Junjie [3 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai 201306, Peoples R China
[2] Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, Middx, England
[3] Shanghai Dianji Univ, Sch Elect Informat Engn, Shanghai 201306, Peoples R China
基金
英国工程与自然科学研究理事会; 上海市自然科学基金; 中国国家自然科学基金;
关键词
Fault diagnosis; Deep learning; Imbalanced data; Ensemble learning; Wind turbine; Loss function; FAULT-DIAGNOSIS; MACHINERY;
D O I
10.1007/s12559-023-10187-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep-learning-based fault diagnosis of wind turbine has played a significant role in advancing the renewable energy industry. However, the imbalanced data sampled by the supervisory control and data acquisition systems has led to low diagnosis accuracy. Additionally, deep neural networks can encounter issues like gradient vanishing and insufficient feature learning during backpropagation when the model is too deep. This article introduces a novel approach that is based on dynamic weight loss functions to modulate unbalanced data and improve diagnostic accuracy by focusing on misclassification of a small sample number. The proposed approach employs a 1D-CNN model and an ensemble-learning-based convolution neural network (EL-CNN) to enhance diversity of models and complementarity of feature learning. The EL-CNN model addresses the problem of local features being overlooked and provides more accurate results. The effectiveness of this proposed approach is well demonstrated through experimental cases on real wind turbine pitch system fault data. Two different networks using three different loss functions and three state-of-the-art fault diagnosis models are tested, demonstrating the EL-CNN model's superiority.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 50 条
  • [21] An Improved Ensemble Learning for Imbalanced Data Classification
    Yuan, Zhengwu
    Zhao, Pu
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 408 - 411
  • [22] Entropy-based hybrid sampling ensemble learning for imbalanced data
    Dongdong, Li
    Ziqiu, Chi
    Bolu, Wang
    Zhe, Wang
    Hai, Yang
    Wenli, Du
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (07) : 3039 - 3067
  • [23] CLUSTERING-BASED SUBSET ENSEMBLE LEARNING METHOD FOR IMBALANCED DATA
    Hu, Xiao-Sheng
    Zhang, Run-Jing
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 35 - 39
  • [24] A synthetic neighborhood generation based ensemble learning for the imbalanced data classification
    Chen, Zhi
    Lin, Tao
    Xia, Xin
    Xu, Hongyan
    Ding, Sha
    APPLIED INTELLIGENCE, 2018, 48 (08) : 2441 - 2457
  • [25] Using Graph-Based Ensemble Learning to Classify Imbalanced Data
    Qin, Anyong
    Shang, Zhaowei
    Tian, Jinyu
    Zhang, Taiping
    Wang, Yulong
    Tang, Yuan Yan
    2017 3RD IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2017, : 265 - 270
  • [26] A Heterogeneous AdaBoost Ensemble Based Extreme Learning Machines for Imbalanced Data
    Abuassba, Adnan Omer
    Zhang, Dezheng
    Luo, Xiong
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2019, 13 (03) : 19 - 35
  • [27] A synthetic neighborhood generation based ensemble learning for the imbalanced data classification
    Zhi Chen
    Tao Lin
    Xin Xia
    Hongyan Xu
    Sha Ding
    Applied Intelligence, 2018, 48 : 2441 - 2457
  • [28] Adaptive Ensemble Undersampling-Boost: A novel learning framework for imbalanced data
    Lu, Wei
    Li, Zhe
    Chu, Jinghui
    JOURNAL OF SYSTEMS AND SOFTWARE, 2017, 132 : 272 - 282
  • [29] Imbalanced ensemble learning leveraging a novel data-level diversity metric
    Pang, Ying
    Peng, Lizhi
    Zhang, Haibo
    Chen, Zhenxiang
    Yang, Bo
    PATTERN RECOGNITION, 2025, 157
  • [30] A Genetic-Based Ensemble Learning Applied to Imbalanced Data Classification
    Klikowski, Jakub
    Ksieniewicz, Pawel
    Wozniak, Michal
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2019), PT II, 2019, 11872 : 340 - 352