Experimental and LBM analysis of medium-Reynolds number fluid flow around NACA0012 airfoil

被引:4
|
作者
Rak, Andro [1 ]
Grbcic, Luka [1 ,2 ]
Sikirica, Ante [2 ]
Kranjcevic, Lado [1 ,2 ]
机构
[1] Univ Rijeka, Fac Engn, Dept Fluid Mech & Computat Engn, Rijeka, Croatia
[2] Ctr Adv Comp & Modelling, Rijeka, Croatia
关键词
Lattice Boltzmann method (LBM); Wind tunnel experiment; NACA; Large eddy simulation (LES); General purpose graphics processing unit (GPGPU); LATTICE-BOLTZMANN METHOD; LARGE-EDDY SIMULATION; MODEL; PARAMETRIZATION; EQUATION; BGK;
D O I
10.1108/HFF-06-2022-0389
中图分类号
O414.1 [热力学];
学科分类号
摘要
PurposeThe purpose of this paper is the examination of fluid flow around NACA0012 airfoil, with the aim of the numerical validation between the experimental results in the wind tunnel and the Lattice Boltzmann method (LBM) analysis, for the medium Reynolds number (Re = 191,000). The LBM-large Eddy simulation (LES) method described in this paper opens up opportunities for faster computational fluid dynamics (CFD) analysis, because of the LBM scalability on high performance computing architectures, more specifically general purpose graphics processing units (GPGPUs), pertaining at the same time the high resolution LES approach. Design/methodology/approachProcess starts with data collection in open-circuit wind tunnel experiment. Furthermore, the pressure coefficient, as a comparative variable, has been used with varying angle of attack (2 degrees, 4 degrees, 6 degrees and 8 degrees) for both experiment and LBM analysis. To numerically reproduce the experimental results, the LBM coupled with the LES turbulence model, the generalized wall function (GWF) and the cumulant collision operator with D3Q27 velocity set has been used. Also, a mesh independence study has been provided to ensure result congruence. FindingsThe proposed LBM methodology is capable of highly accurate predictions when compared with experimental data. Besides, the special significance of this work is the possibility of experimental and CFD comparison for the same domain dimensions. Originality/valueConsidering the quality of results, root-mean-square error (RMSE) shows good correlations both for airfoil's upper and lower surface. More precisely, maximal RMSE for the upper surface is 0.105, whereas 0.089 for the lower surface, regarding all angles of attack.
引用
收藏
页码:1955 / 1980
页数:26
相关论文
共 50 条
  • [1] Numerical Analysis of Fluid Flow Over Plunging NACA0012 Airfoil at Low Reynolds Number
    Surya, K. Jaya
    Shin, H. S. Rego Hentry
    Kumar, S. Ajith
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 362 - 366
  • [2] Stability of the Low Reynolds Number Compressible Flow Past a NACA0012 Airfoil
    Rolandi, Laura Victoria
    Jardin, Thierry
    Fontane, Jerome
    Gressier, Jeremie
    Joly, Laurent
    AIAA JOURNAL, 2022, 60 (02) : 1052 - 1066
  • [3] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    P. Akbarzadeh
    A. Askari Lehdarboni
    S. M. Derazgisoo
    Meccanica, 2018, 53 : 3457 - 3476
  • [4] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Akbarzadeh, P.
    Lehdarboni, A. Askari
    Derazgisoo, S. M.
    MECCANICA, 2018, 53 (14) : 3457 - 3476
  • [5] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, P.Box: 3619995161, Shahrood
    Semnan, Iran
    Meccanica, 14 (3457-3476):
  • [6] DYNAMIC STALL SIMULATION OF FLOW OVER NACA0012 AIRFOIL AT 1 MILLION REYNOLDS NUMBER
    Kasibhotla, Venkata Ravishankar
    Tafti, Danesh
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 7A, 2016,
  • [7] LBM-LES Modelling of Low Reynolds Number Turbulent Flow Over NACA0012 Aerofoil
    Nadim, Nima
    Chandratilleke, Tilak T.
    Krause, Mathias J.
    FLUID-STRUCTURE-SOUND INTERACTIONS AND CONTROL, 2016, : 205 - 210
  • [8] An experimental investigation on the flow control of the partially stepped NACA0012 airfoil at low Reynolds numbers
    Seyhan, Mehmet
    Akbiyik, Hurrem
    OCEAN ENGINEERING, 2024, 306
  • [9] Strong transient effects of the flow around a harmonically plunging NACA0012 airfoil at low Reynolds numbers
    S. Banu Yucel
    Mehmet Sahin
    M. Fevzi Unal
    Theoretical and Computational Fluid Dynamics, 2015, 29 : 391 - 412
  • [10] Strong transient effects of the flow around a harmonically plunging NACA0012 airfoil at low Reynolds numbers
    Yucel, S. Banu
    Sahin, Mehmet
    Unal, M. Fevzi
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2015, 29 (5-6) : 391 - 412