DYNAMIC STALL SIMULATION OF FLOW OVER NACA0012 AIRFOIL AT 1 MILLION REYNOLDS NUMBER

被引:0
|
作者
Kasibhotla, Venkata Ravishankar [1 ]
Tafti, Danesh [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
关键词
TURBULENCE MODELS; OSCILLATING AIRFOILS; PITCHING AIRFOIL; PREDICTION; SEPARATION; FLUID;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper is concerned with the prediction and analysis of dynamic stall of flow past a pitching NACA0012 airfoil at 1 million Reynolds number based on the chord length of the airfoil and at reduced frequency of 0.25 in a three dimensional flow field. The turbulence in the flow field is resolved using large eddy simulations with the dynamic Smagorinsky model at the sub grid scale. The development of dynamic stall vortex, shedding and reattachment as predicted by the present study are discussed in detail. This study has shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. The lift coefficient agrees well with the measurements during the upstroke. However, there are differences during the downstroke. The computed lift coefficient undergoes a sharp drop during the start of the downstroke as the convected leading edge vortex moves away from the airfoil surface. This is followed by a recovery of the lift coefficient with the formation of a secondary trailing edge vortex. While these dynamics are clearly reflected in the predicted lift coefficient, the experimental evolution of lift during the downstroke maintains a fairly smooth and monotonic decrease in the lift coefficient with no lift recovery. The simulations also show that the reattachment process of the stalled airfoil is completed before the start of the upstroke in the subsequent cycle due to the high reduced frequency of the pitching cycle.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical Analysis of Fluid Flow Over Plunging NACA0012 Airfoil at Low Reynolds Number
    Surya, K. Jaya
    Shin, H. S. Rego Hentry
    Kumar, S. Ajith
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 362 - 366
  • [2] Stability of the Low Reynolds Number Compressible Flow Past a NACA0012 Airfoil
    Rolandi, Laura Victoria
    Jardin, Thierry
    Fontane, Jerome
    Gressier, Jeremie
    Joly, Laurent
    AIAA JOURNAL, 2022, 60 (02) : 1052 - 1066
  • [3] CONTINUOUS BLOWING JET FLOW CONTROL OPTIMIZATION IN DYNAMIC STALL OF NACA0012 AIRFOIL
    Tadjfar, M.
    Kasmaiee, Saman
    Noori, S.
    PROCEEDINGS OF THE ASME 2020 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2020), VOL 2, 2020,
  • [4] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    P. Akbarzadeh
    A. Askari Lehdarboni
    S. M. Derazgisoo
    Meccanica, 2018, 53 : 3457 - 3476
  • [5] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Akbarzadeh, P.
    Lehdarboni, A. Askari
    Derazgisoo, S. M.
    MECCANICA, 2018, 53 (14) : 3457 - 3476
  • [6] LARGE EDDY SIMULATION OF THE FLOW PAST PITCHING NACA0012 AIRFOIL AT 1E5 REYNOLDS NUMBER
    Kasibhotla, Venkata Ravishankar
    Tafti, Danesh
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING - 2014, VOL 1A: SYMPOSIA, 2014,
  • [7] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, P.Box: 3619995161, Shahrood
    Semnan, Iran
    Meccanica, 14 (3457-3476):
  • [8] Direct numerical simulation of NACA0012 cascade flow at low Reynolds number
    Zhu, Hai-Tao
    Shan, Peng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2013, 28 (02): : 401 - 409
  • [9] Lattice-Boltzmann Simulations of an Oscillating NACA0012 Airfoil in Dynamic Stall
    Ribeiro, Andre F. P.
    Casalino, Damiano
    Fares, Ehab
    ADVANCES IN FLUID-STRUCTURE INTERACTION, 2016, 133 : 179 - 192