Recursive formulation and parallel implementation of multiscale mixed methods

被引:2
|
作者
Abreu, E. [1 ]
Ferraz, P. [2 ]
Santo, A. M. Espirito [3 ]
Pereira, F. [4 ]
Santos, L. G. C. [5 ]
Sousa, F. S. [6 ]
机构
[1] Univ Estadual Campinas, Inst Matemat, Estat & Computacao Cient, R Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] CNPEM, Brazilian Synchrotron Light Lab, Sci Comp Grp, Campinas, SP, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, Ave Bento Goncalves 9500, BR-13083859 Porto Alegre, Rio Grande do S, Brazil
[4] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
[5] Univ Estadual Campinas, Ctr Estudos Petr, R Cora Coralina 350, BR-13083896 Campinas, SP, Brazil
[6] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Recursive Multiscale Robin Coupled Method; Parallelization; Mixed finite elements; Domain decomposition; Fluid dynamics in porous media; Darcy?s law; FINITE-VOLUME METHOD; MULTIPHASE FLOW; ELLIPTIC PROBLEMS; ELEMENT METHODS; POROUS-MEDIA; SIMULATION; EQUATIONS;
D O I
10.1016/j.jcp.2022.111681
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multiscale methods for second order elliptic equations based on non-overlapping domain decomposition schemes have great potential to take advantage of multi-core, state -of-the-art parallel computers. These methods typically involve solving local boundary value problems followed by the solution of a global interface problem. Known iterative procedures for the solution of the interface problem have typically slow convergence, increasing the overall cost of the multiscale solver. To overcome this problem we develop a scalable recursive solution method for such interface problem that replaces the global problem by a family of small interface systems associated with adjacent subdomains, in a hierarchy of nested subdomains. Then, we propose a novel parallel algorithm to implement our recursive formulation in multi-core devices using the Multiscale Robin Coupled Method by Guiraldello et al. (2018) [26], that can be seen as a generalization of several multiscale mixed methods. Through several numerical studies we show that the new algorithm is very fast and exhibits excellent strong and weak scalability. We consider very large problems, that can have billions of discretization cells, motivated by the numerical simulation of subsurface flows.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Constraint energy minimizing generalized multiscale finite element method in the mixed formulation
    Eric Chung
    Yalchin Efendiev
    Wing Tat Leung
    Computational Geosciences, 2018, 22 : 677 - 693
  • [32] Constraint energy minimizing generalized multiscale finite element method in the mixed formulation
    Chung, Eric
    Efendiev, Yalchin
    Leung, Wing Tat
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (03) : 677 - 693
  • [33] Algorithm and Implementation of Parallel Multiplication in a Mixed Number System
    罗银芳
    Journal of Computer Science & Technology, 1988, (03) : 203 - 213
  • [34] Numerical implementation of the multiscale and averaging methods for quasi periodic systems
    Kachman, Tal
    Fishman, Shmuel
    Soffer, Avy
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 : 235 - 245
  • [35] Aeroacoustic integral methods, formulation and efficient numerical implementation
    Prieur, J
    Rahier, G
    AEROSPACE SCIENCE AND TECHNOLOGY, 2001, 5 (07) : 457 - 468
  • [36] Tailored implementation approaches using mixed methods and implementation teams
    Lewis, Cara C.
    IMPLEMENTATION SCIENCE, 2018, 13
  • [37] Tailored implementation approaches using mixed methods and implementation teams
    Lewis, Cara C.
    IMPLEMENTATION SCIENCE, 2017, 13
  • [38] Efficient implementation of a semi-recursive formulation for the dynamics of large size multibody systems
    Hidalgo, A. F.
    Garcia de Jalon, J.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2013, 29 (04): : 225 - 233
  • [39] Multiscale mixed/mimetic methods on corner-point grids
    Jørg E. Aarnes
    Stein Krogstad
    Knut-Andreas Lie
    Computational Geosciences, 2008, 12 : 297 - 315
  • [40] Multiscale angiogenesis modeling using mixed finite element methods
    Sun, SY
    Wheeler, MF
    Obeyesekere, M
    Patrick, C
    MULTISCALE MODELING & SIMULATION, 2005, 4 (04): : 1137 - 1167