Orbital Stability of Peakons and Multi-peakons for a Generalized Cubic-Quintic Camassa-Holm Type Equation

被引:0
|
作者
Deng, Tongjie [1 ]
Chen, Aiyong [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Peoples R China
[2] Hunan First Normal Univ, Dept Math, Changsha 410205, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized cubic-quintic Camassa-Holm type equation; Peakons; Multi-peakons; Orbital stability; CAUCHY-PROBLEM; BLOW-UP; WAVE SOLUTIONS; SOLITONS;
D O I
10.1007/s44198-022-00093-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The peakons and mulit-peakons for a generalized cubic-quintic Camassa-Holm type equation have been obtained by Weng et al. (Monatsh Math, 2022. http://doi. org/10.1007/s00605-022-01699-w) . In this paper, by constructing certain Lyapunov functionals, we prove that the peakons were orbitally stable in the energy space. Furthermore, using energy argument and combining the method of the orbital stability of peakons with monotonicity of the local energy norm, we also prove that the sum of N sufficiently decoupled peakons is orbitally stable in the energy space.
引用
收藏
页码:493 / 530
页数:38
相关论文
共 50 条
  • [21] Stability of Peakons for an Integrable Modified Camassa-Holm Equation with Cubic Nonlinearity
    Changzheng Qu
    Xiaochuan Liu
    Yue Liu
    Communications in Mathematical Physics, 2013, 322 : 967 - 997
  • [22] Stability of Peakons for an Integrable Modified Camassa-Holm Equation with Cubic Nonlinearity
    Qu, Changzheng
    Liu, Xiaochuan
    Liu, Yue
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) : 967 - 997
  • [23] ORBITAL STABILITY OF ELLIPTIC PERIODIC PEAKONS FOR THE MODIFIED CAMASSA-HOLM EQUATION
    Chen, Aiyong
    Lu, Xinhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (03) : 1703 - 1735
  • [24] Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation
    Liu, Xiaochuan
    Liu, Yue
    Qu, Changzheng
    ADVANCES IN MATHEMATICS, 2014, 255 : 1 - 37
  • [25] Orbital Stability of Peakons for the Modified Camassa—Holm Equation
    Ji Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 148 - 160
  • [26] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74
  • [27] Orbital stability of the sum of N peakons for the generalized higher-order Camassa-Holm equation
    Deng, Tongjie
    Chen, Aiyong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [28] Orbital Stability of Peakons for the Modified Camassa–Holm Equation
    Ji LI
    Acta Mathematica Sinica,English Series, 2022, (01) : 148 - 160
  • [29] Fifth order Camassa Holm model with pseudo-peakons and multi-peakons
    Liu, Quansheng
    Qiao, Zhijun
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 105 : 179 - 185
  • [30] Peakons and periodic cusp waves in a generalized Camassa-Holm equation
    Qian, TF
    Tang, MY
    CHAOS SOLITONS & FRACTALS, 2001, 12 (07) : 1347 - 1360