The Emergence of the Hexagonal Lattice in Two-Dimensional Wigner Fragments

被引:0
|
作者
Azor, Miguel Escobar [1 ,2 ]
Alrakik, Amer [3 ]
de Bentzmann, Louan [3 ]
Telleria-Allika, Xabier [4 ,5 ]
de Meras, Alfredo Sanchez [6 ]
Evangelisti, Stefano [3 ]
Berger, J. Arjan [2 ,3 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[2] European Theoret Spect Facil ETSF, Paris, France
[3] Univ Toulouse, CNRS, UPS, Lab Chim & Phys Quant, F-31062 Toulouse, France
[4] Euskal Herriko Unibertsitatea UPV EHU, Polimero & Mat Aurreratuak Fis Kim & Teknol Saila, Kim Fak, Donostia San Sebastian 20080, Spain
[5] DIPC, Donostia San Sebastian 20080, Spain
[6] Univ Valencia, Dept Quim Fis, Burjassot 46100, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 13期
关键词
ELECTRONS; CRYSTAL; MOLECULE; LIQUID; STATES;
D O I
10.1021/acs.jpclett.4c00453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
At very low density, the electrons in a uniform electron gas spontaneously break symmetry and form a crystalline lattice called a Wigner crystal. But which type of crystal will the electrons form? We report a numerical study of the density profiles of fragments of Wigner crystals from first principles. To simulate Wigner fragments, we use Clifford periodic boundary conditions and a renormalized distance in the Coulomb potential. Moreover, we show that high-spin restricted open-shell Hartree-Fock theory becomes exact in the low-density limit. We are thus able to accurately capture the localization in two-dimensional Wigner fragments with many electrons. No assumptions about the positions where the electrons will localize are made. The density profiles we obtain emerge naturally when we minimize the total energy of the system. We clearly observe the emergence of the hexagonal crystal structure, which has been predicted to be the ground-state structure of the two-dimensional Wigner crystal.
引用
下载
收藏
页码:3571 / 3575
页数:5
相关论文
共 50 条
  • [11] Photonic band structure in a two-dimensional hexagonal lattice of equilateral triangles
    Segovia-Chaves, Francis
    Vinck-Posada, Herbert
    Navarro-Baron, Erik
    PHYSICS LETTERS A, 2019, 383 (25) : 3207 - 3213
  • [12] Lower bound for the ground-state energy of a two-dimensional Wigner lattice
    Nagy, I
    PHYSICAL REVIEW B, 1999, 60 (07): : 4404 - 4405
  • [13] Evolution of the charge density wave order on the two-dimensional hexagonal lattice
    Litak, Grzegorz
    Wysokinskic, Karol Izydor
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 440 : 104 - 107
  • [14] Negative refraction in a two-dimensional hexagonal lattice annular photonic crystal
    Xia, Feng
    Yun, Maojin
    Liu, Meiling
    Liang, Jian
    PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS VI, 2012, 8497
  • [15] TOPOLOGICAL QUANTUM PHASE TRANSITIONS IN TWO-DIMENSIONAL HEXAGONAL LATTICE BILAYERS
    Zhai, Xuechao
    Jin, Guojun
    SPIN, 2013, 3 (02)
  • [16] Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice
    Saito, Hikaru
    Yamamoto, Naoki
    OPTICS EXPRESS, 2015, 23 (03): : 2524 - 2540
  • [17] Microfabricated two-dimensional (2D) hexagonal lattice trap
    Rattanasonti, H.
    Srinivasan, P.
    Kraft, M.
    Sterling, R. C.
    Weidt, S.
    Lake, K.
    Webster, S. C.
    Hensinger, W. K.
    2013 IEEE SENSORS, 2013, : 924 - 927
  • [18] Vacancions in the two-dimensional Wigner crystal
    Bisti, V. E.
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556
  • [19] TRANSVERSE MOTION QUANTIZING EFFECT ON THE NORMAL VIBRATION SPECTRUM OF TWO-DIMENSIONAL WIGNER LATTICE
    BURDEINYI, VM
    FIZIKA TVERDOGO TELA, 1983, 25 (03): : 913 - 915
  • [20] The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media
    Zhang, WY
    Hu, A
    Ming, NB
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (02) : 541 - 549