The Emergence of the Hexagonal Lattice in Two-Dimensional Wigner Fragments

被引:0
|
作者
Azor, Miguel Escobar [1 ,2 ]
Alrakik, Amer [3 ]
de Bentzmann, Louan [3 ]
Telleria-Allika, Xabier [4 ,5 ]
de Meras, Alfredo Sanchez [6 ]
Evangelisti, Stefano [3 ]
Berger, J. Arjan [2 ,3 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[2] European Theoret Spect Facil ETSF, Paris, France
[3] Univ Toulouse, CNRS, UPS, Lab Chim & Phys Quant, F-31062 Toulouse, France
[4] Euskal Herriko Unibertsitatea UPV EHU, Polimero & Mat Aurreratuak Fis Kim & Teknol Saila, Kim Fak, Donostia San Sebastian 20080, Spain
[5] DIPC, Donostia San Sebastian 20080, Spain
[6] Univ Valencia, Dept Quim Fis, Burjassot 46100, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 13期
关键词
ELECTRONS; CRYSTAL; MOLECULE; LIQUID; STATES;
D O I
10.1021/acs.jpclett.4c00453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
At very low density, the electrons in a uniform electron gas spontaneously break symmetry and form a crystalline lattice called a Wigner crystal. But which type of crystal will the electrons form? We report a numerical study of the density profiles of fragments of Wigner crystals from first principles. To simulate Wigner fragments, we use Clifford periodic boundary conditions and a renormalized distance in the Coulomb potential. Moreover, we show that high-spin restricted open-shell Hartree-Fock theory becomes exact in the low-density limit. We are thus able to accurately capture the localization in two-dimensional Wigner fragments with many electrons. No assumptions about the positions where the electrons will localize are made. The density profiles we obtain emerge naturally when we minimize the total energy of the system. We clearly observe the emergence of the hexagonal crystal structure, which has been predicted to be the ground-state structure of the two-dimensional Wigner crystal.
引用
收藏
页码:3571 / 3575
页数:5
相关论文
共 50 条
  • [1] Two-dimensional mobile breather scattering in a hexagonal crystal lattice
    Bajars, Janis
    Eilbeck, J. Chris
    Leimkuhler, Benedict
    [J]. PHYSICAL REVIEW E, 2021, 103 (02)
  • [2] Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals
    Sun Xiao-Xia
    Wang Chun-Hua
    Gao Feng
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (02)
  • [3] Compact triplexer in two-dimensional hexagonal lattice photonic crystals
    Ren, Hongliang
    Ma, Jianping
    Wen, Hao
    Qin, Yali
    Wu, Zhefu
    Hu, Weisheng
    Jiang, Chun
    Jin, Yaohui
    [J]. CHINESE OPTICS LETTERS, 2011, 9 (04)
  • [4] A TWO-DIMENSIONAL WIGNER LATTICE IN THE PRESENCE OF A RANDOM ARRAY OF PINNING CENTERS
    EGUILUZ, AG
    MARADUDIN, AA
    ELLIOTT, RJ
    [J]. SURFACE SCIENCE, 1982, 113 (1-3) : 426 - 431
  • [5] Wave Characteristics of Two-Dimensional Hierarchical Hexagonal Lattice Structures
    Xu, Y. L.
    Chen, C. Q.
    Tian, X. G.
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [6] Compact triplexer in two-dimensional hexagonal lattice photonic crystals
    任宏亮
    马建平
    温浩
    覃亚丽
    吴哲夫
    胡卫生
    姜淳
    金耀辉
    [J]. Chinese Optics Letters, 2011, 9 (04) : 91 - 94
  • [7] Influences of negative stiffness on a two-dimensional hexagonal lattice cell
    Wang, Y.-C.
    [J]. PHILOSOPHICAL MAGAZINE, 2007, 87 (24) : 3671 - 3688
  • [8] Phase Transitions in Two-Dimensional Potts Models on the Hexagonal Lattice
    A. K. Murtazaev
    A. B. Babaev
    [J]. Journal of Experimental and Theoretical Physics, 2022, 134 : 720 - 724
  • [9] Phase Transitions in Two-Dimensional Potts Models on the Hexagonal Lattice
    Murtazaev, A. K.
    Babaev, A. B.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 134 (06) : 720 - 724
  • [10] A two-dimensional Wigner crystal
    Monarkha, Yu. P.
    Syvokon, V. E.
    [J]. LOW TEMPERATURE PHYSICS, 2012, 38 (12) : 1067 - 1095