Assessing the impact of climate change on the potential distribution of the Carthaginian tree frog (Hyla carthaginiensis): a species distribution modelling approach integrating different dispersal scenarios

被引:2
|
作者
Kalboussi, Mohsen [1 ]
Achour, Hammadi [2 ]
机构
[1] Inst Super Agron Chott Meriem, Chott Meriem 4042, Tunisia
[2] Univ Jendouba, Inst Sylvo Pastoral Tabarka, Lab Ressources SYLVO Pastorales, Tabarka 8110, Tunisia
关键词
Maximum entropy; Dispersal ability; Hyla carthaginiensis; Climate change; Endemic; QUANTIFYING FUNCTIONAL CONNECTIVITY; BATRACHOCHYTRIUM-DENDROBATIDIS; AMPHIBIAN POPULATIONS; SHIFTS; BIODIVERSITY; CONSERVATION; EXTINCTIONS; PREDICTION; RESISTANCE; PHENOLOGY;
D O I
10.1007/s40808-024-01995-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Carthaginian tree frog, Hyla carthaginiensis, is an endemic species confined to northern Tunisia and north-eastern Algeria. The species is known for its limited dispersal ability and its sensitivity to heat and water stress. With climate change and the latent rise in temperatures, the species could face potential hazards, thereby increasing its susceptibility. This study, therefore, sought to assess the impact of climate change on the potential distribution of Hyla carthaginiensis using climate projections from three global circulation models and two socio-economic pathways (SSP3-7.0 and SSP5-8.5) for 2050. The maximum entropy (MaxEnt) model was developed using six bioclimatic variables and 120 occurrence locations. The future prediction models were adjusted based on three dispersal scenarios, namely 'fixed rate dispersal', 'limited dispersal' and 'no dispersal'. The current model predicted approximately 6,784 km(2) as suitable habitat for the species, with only 7% occurring above 500 m. Projections for the future range exhibited a gradual decline ranging from 64 to 90%, depending on the SSP and dispersal scenario used. The most drastic decline is projected under SSP585 and the no dispersal scenario, potentially losing 90% of the current range by 2050. According to this dispersal scenario, habitats below 250 m altitude are likely to be lost, possibly leading to an altitudinal shift that could confine the species to mountaintops. Our results provide further evidence of the negative impact of climate change on endemic amphibians and emphasise the importance of considering diverse dispersal scenarios in their conservation.
引用
收藏
页码:3897 / 3910
页数:14
相关论文
共 50 条
  • [21] Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa
    Richardson, David M.
    Iponga, Donald M.
    Roura-Pascual, Nuria
    Krug, Rainer M.
    Milton, Suzanne J.
    Hughes, Gregory O.
    Thuiller, Wilfried
    ECOGRAPHY, 2010, 33 (06) : 1049 - 1061
  • [22] Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling
    Dan Liu
    Xiangdong Lei
    Wenqiang Gao
    Hong Guo
    Yangsheng Xie
    Liyong Fu
    Yuancai Lei
    Yutang Li
    Zhuoli Zhang
    Shouzheng Tang
    Journal of Forestry Research, 2022, 33 : 1739 - 1750
  • [23] Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling
    Liu, Dan
    Lei, Xiangdong
    Gao, Wenqiang
    Guo, Hong
    Xie, Yangsheng
    Fu, Liyong
    Lei, Yuancai
    Li, Yutang
    Zhang, Zhuoli
    Tang, Shouzheng
    JOURNAL OF FORESTRY RESEARCH, 2022, 33 (06) : 1739 - 1750
  • [24] Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling
    Dan Liu
    Xiangdong Lei
    Wenqiang Gao
    Hong Guo
    Yangsheng Xie
    Liyong Fu
    Yuancai Lei
    Yutang Li
    Zhuoli Zhang
    Shouzheng Tang
    JournalofForestryResearch, 2022, 33 (06) : 1739 - 1750
  • [25] The Potential Distribution of Tree Species in Three Periods of Time under a Climate Change Scenario
    Antunez, Pablo
    Ernesto Suarez-Mota, Mario
    Valenzuela-Encinas, Cesar
    Ruiz-Aquino, Faustino
    FORESTS, 2018, 9 (10):
  • [26] Potential distribution of dominant malaria vector species in tropical region under climate change scenarios
    Akpan, Godwin E.
    Adepoju, Kayode A.
    Oladosu, Olakunle R.
    PLOS ONE, 2019, 14 (06):
  • [27] Assessing the geographical distribution of 76 Dendrobium species and impacts of climate change on their potential suitable distribution area in China
    Pan, Chunxing
    Chen, Surui
    Chen, Ziming
    Li, Yiming
    Liu, Yike
    Zhang, Zejun
    Xu, Yani
    Liu, Guanting
    Yang, Kaiye
    Liu, Guangrong
    Du, Zhiyun
    Zhang, Lanyue
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (14) : 20571 - 20592
  • [28] Assessing the geographical distribution of 76 Dendrobium species and impacts of climate change on their potential suitable distribution area in China
    Chunxing Pan
    Surui Chen
    Ziming Chen
    Yiming Li
    Yike Liu
    Zejun Zhang
    Yani Xu
    Guanting Liu
    Kaiye Yang
    Guangrong Liu
    Zhiyun Du
    Lanyue Zhang
    Environmental Science and Pollution Research, 2022, 29 : 20571 - 20592
  • [29] Projecting the distribution and abundance of Mediterranean tree species under climate change: a demographic approach
    Garcia-Callejas, David
    Molowny-Horas, Roberto
    Retana, Javier
    JOURNAL OF PLANT ECOLOGY, 2017, 10 (05) : 731 - 743
  • [30] Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions
    Forester, Brenna R.
    DeChaine, Eric G.
    Bunn, Andrew G.
    DIVERSITY AND DISTRIBUTIONS, 2013, 19 (12) : 1480 - 1495