The semi-discrete diffusion convection equation with decay

被引:0
|
作者
Lizama, Carlos [1 ]
Warma, Mahamadi [2 ]
机构
[1] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Sophoras 173, Santiago, Chile
[2] George Mason Univ, Ctr Math & Artificial Intelligence, Dept Math Sci, Fairfax, VA 22030 USA
关键词
Semi-discrete equations; Uniformly continuous one-parameter; semigroups; Fundamental solutions; Stability; Regularity;
D O I
10.1016/j.aml.2023.108979
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find the fundamental solution of the semi-discrete diffusion convection equation with decay, and we show that under a certain combination of the parameters of the equation said fundamental solution constitutes a uniformly continuous semigroup of operators in the Lebesgue spaces l(p) (Z),1 <= p <= infinity
引用
收藏
页数:5
相关论文
共 50 条
  • [21] The controllability for the semi-discrete wave equation with a finite element method
    Guojie Zheng
    Xin Yu
    Advances in Difference Equations, 2013
  • [22] A semi-discrete scheme for the stochastic nonlinear Schrödinger equation
    A. De Bouard
    A. Debussche
    Numerische Mathematik, 2004, 96 : 733 - 770
  • [23] Exact solutions of semi-discrete sine-Gordon equation
    Hanif, Y.
    Saleem, U.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [24] An integrable semi-discrete equation and combinatorial numbers with their combinatorial interpretations
    Chang, Xiang-Ke
    Hu, Xing-Biao
    Yu, Guo-Fu
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) : 1093 - 1107
  • [25] The controllability for the semi-discrete wave equation with a finite element method
    Zheng, Guojie
    Yu, Xin
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [26] Commutativity of Pfaffianization and Backlund transformation: The semi-discrete Toda equation
    Zhao, Jun-Xiao
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) : 388 - 396
  • [27] Binary modulated oscillations in a semi-discrete version of burgers equation
    Hayes, Brian T.
    Physica D: Nonlinear Phenomena, 1997, 106 (3-4): : 287 - 313
  • [29] A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation
    Sun, HongGuang
    Liu, Xiaoting
    Zhang, Yong
    Pang, Guofei
    Garrard, Rhiannon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 74 - 90
  • [30] Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves
    Inoguchi, Jun-ichi
    Kajiwara, Kenji
    Matsuura, Nozomu
    Ohta, Yasuhiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (04)