Separable zero energy topological edge states and nonzero energy gap states in the nonreciprocal Su-Schrieffer-Heeger model

被引:6
|
作者
Geng, Wen-Jie [1 ]
Wang, Ya-Jun [1 ]
Zhang, Zhi-Xu [2 ]
Cao, Ji [1 ]
Cui, Wen-Xue [1 ,3 ,4 ]
Wang, Hong-Fu [1 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
[2] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[3] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
关键词
SURFACE; PHASE;
D O I
10.1103/PhysRevB.108.144109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Complex energy eigenvalues and the non-Hermitian skin effect are two notable properties of non-Hermitian systems. These properties result in the localization of all eigenstates at the system boundaries, which can undermine the dynamic stability and experimental detection of topological edge states. In this paper, we investigate the one-dimensional non-Hermitian Su-Schrieffer-Heeger model with next-nearest-neighbor nonreciprocal hopping. By examining the energy spectrum and state distributions of the system, we demonstrate that the zero energy topological edge state and nonzero energy gap state can be distinguished from the non-Hermitian skin states. Additionally, we analyze the localization properties of these two states using the directional inverse participation ratio and investigate the non-Hermitian skin effect through the energy spectrum on the complex plane and the spectral winding number. Furthermore, we present phase diagrams of separation factor that illustrate the separation phenomenon between the edge or gap state and skin states. This work reveals the intriguing relationship between topological properties and non-Hermitian skin effects in one-dimensional nonreciprocal systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Experiments with nonlinear topological edge states in static and dynamically modulated Su-Schrieffer-Heeger arrays
    Kartashov, Y., V
    Ivanov, S. K.
    Zhang, Y. Q.
    Zhuravitskii, S. A.
    Skryabin, N. N.
    Dyakonov, I., V
    Kalinkin, A. A.
    Kulik, S. P.
    Kompanets, V. O.
    Chekalin, S., V
    Zadkov, V. N.
    PHYSICS-USPEKHI, 2024, 67 (11) : 1095 - 1110
  • [22] Phases and density of states in a generalized Su-Schrieffer-Heeger model
    Voo, KK
    Mou, CY
    PHYSICA B-CONDENSED MATTER, 2004, 344 (1-4) : 224 - 230
  • [23] Topological invariants, zero mode edge states and finite size effect for a generalized non-reciprocal Su-Schrieffer-Heeger model
    Hui Jiang
    Rong Lü
    Shu Chen
    The European Physical Journal B, 2020, 93
  • [24] Topological invariants, zero mode edge states and finite size effect for a generalized non-reciprocal Su-Schrieffer-Heeger model
    Jiang, Hui
    Lu, Rong
    Chen, Shu
    EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (07):
  • [25] Localized photonic states and dynamic process in nonreciprocal coupled Su-Schrieffer-Heeger chain
    Cui, Wen-Xue
    Qi, Lu
    Xing, Yan
    Liu, Shutian
    Zhang, Shou
    Wang, Hong-Fu
    OPTICS EXPRESS, 2020, 28 (24): : 37026 - 37039
  • [26] Tunable topological edge modes in Su-Schrieffer-Heeger arrays
    Chaplain, G. J.
    Gliozzi, A. S.
    Davies, B.
    Urban, D.
    Descrovi, E.
    Bosia, F.
    Craster, R. V.
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [27] Topological edge breathers in a nonlinear Su-Schrieffer-Heeger lattice
    Johansson, Magnus
    PHYSICS LETTERS A, 2023, 458
  • [28] Topological gap solitons in Rabi Su-Schrieffer-Heeger lattices
    Li, Chunyan
    Kartashov, Yaroslav V.
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [29] Zero Energy States for Commensurate Hopping Modulation of a Generalized Su-Schrieffer-Heeger Chain in the Presence of a Domain Wall
    Department of Physics, Jadavpur University, West Bengal, Kolkata
    700032, India
    不详
    712611, India
    arXiv, 1600,
  • [30] Topological characterizations of an extended Su-Schrieffer-Heeger model
    Xie, Dizhou
    Gou, Wei
    Xiao, Teng
    Gadway, Bryce
    Yan, Bo
    NPJ QUANTUM INFORMATION, 2019, 5 (1)