Separable zero energy topological edge states and nonzero energy gap states in the nonreciprocal Su-Schrieffer-Heeger model

被引:6
|
作者
Geng, Wen-Jie [1 ]
Wang, Ya-Jun [1 ]
Zhang, Zhi-Xu [2 ]
Cao, Ji [1 ]
Cui, Wen-Xue [1 ,3 ,4 ]
Wang, Hong-Fu [1 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
[2] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[3] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
关键词
SURFACE; PHASE;
D O I
10.1103/PhysRevB.108.144109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Complex energy eigenvalues and the non-Hermitian skin effect are two notable properties of non-Hermitian systems. These properties result in the localization of all eigenstates at the system boundaries, which can undermine the dynamic stability and experimental detection of topological edge states. In this paper, we investigate the one-dimensional non-Hermitian Su-Schrieffer-Heeger model with next-nearest-neighbor nonreciprocal hopping. By examining the energy spectrum and state distributions of the system, we demonstrate that the zero energy topological edge state and nonzero energy gap state can be distinguished from the non-Hermitian skin states. Additionally, we analyze the localization properties of these two states using the directional inverse participation ratio and investigate the non-Hermitian skin effect through the energy spectrum on the complex plane and the spectral winding number. Furthermore, we present phase diagrams of separation factor that illustrate the separation phenomenon between the edge or gap state and skin states. This work reveals the intriguing relationship between topological properties and non-Hermitian skin effects in one-dimensional nonreciprocal systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Topological edge states in the Su-Schrieffer-Heeger model
    Obana, Daichi
    Liu, Feng
    Wakabayashi, Katsunori
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [2] Topological photonic Tamm states and the Su-Schrieffer-Heeger model
    Henriques, J. C. G.
    Rappoport, T. G.
    Bludov, Y., V
    Vasilevskiy, M., I
    Peres, N. M. R.
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [3] Su-Schrieffer-Heeger model inspired acoustic interface states and edge states
    Li, Xin
    Meng, Yan
    Wu, Xiaoxiao
    Yan, Sheng
    Huang, Yingzhou
    Wang, Shuxia
    Wen, Weijia
    APPLIED PHYSICS LETTERS, 2018, 113 (20)
  • [4] Boundary Effect on In-gap Edge States in Nonlocal Su-Schrieffer-Heeger model
    Alisepahi, Amir Rajabpoor
    Ma, Jihong
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XVIII, 2024, 12951
  • [5] Emergence of Floquet edge states in the coupled Su-Schrieffer-Heeger model
    Borja, Carla
    Gutierrez, Esther
    Lopez, Alexander
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (20)
  • [6] Topological edge states in the Su-Schrieffer-Heeger model subject to balanced particle gain and loss
    Klett, Marcel
    Cartarius, Holger
    Dast, Dennis
    Main, Joerg
    Wunner, Guenter
    EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (12):
  • [7] Topological edge states in the Su-Schrieffer-Heeger model subject to balanced particle gain and loss
    Marcel Klett
    Holger Cartarius
    Dennis Dast
    Jörg Main
    Günter Wunner
    The European Physical Journal D, 2018, 72
  • [8] Tunable topological edge states and energy harvesting of piezoelectric-inductance phononic crystals based on Su-Schrieffer-Heeger model
    Liu, Cong
    Tian, Yuping
    Zhang, Yongqiang
    Tan, Zhuhua
    PHYSICS LETTERS A, 2024, 506
  • [9] Topological bound states in interacting Su-Schrieffer-Heeger rings
    Marques, A. M.
    Dias, R. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (30)
  • [10] Multihole edge states in Su-Schrieffer-Heeger chains with interactions
    Marques, A. M.
    Dias, R. G.
    PHYSICAL REVIEW B, 2017, 95 (11)