Influence of polymerisation conditions on the kinetics of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) triblock synthesis and the occurrence of transesterification side reactions

被引:2
|
作者
Yan, Jie [1 ]
Marina, Paula Facal [1 ]
Blencowe, Anton [1 ]
机构
[1] Univ South Australia, Ctr Pharmaceut Innovat CPI, Appl Chem & Translat Biomat ACTB Grp, Clin & Hlth Sci, Adelaide, SA 5001, Australia
关键词
PLGA-PEG-PLGA; RING-OPENING POLYMERIZATION; THERMOSENSITIVE HYDROGELS; EPSILON-CAPROLACTONE; MOLECULAR-WEIGHT; BLOCK-COPOLYMER; L-LACTIDE; IN-VITRO; DELIVERY; RELEASE;
D O I
10.1039/d3py00139c
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-PLGA) block copolymers and their thermoresponsive hydrogels have been widely studied as injectable depots for the sustained release of therapeutics. The thermogelling temperatures of PEG-PLGA copolymer solutions and the properties of their corresponding hydrogels are highly sensitive to the polymer microstructure. Often, it can be difficult to precisely control the microstructure because of transesterification side reactions that occur during ring-opening polymerisation (ROP) of lactide (L) and glycolide (G) monomers under various conditions. Therefore, we undertook a detailed study to understand how different reaction conditions influenced the reaction kinetics, monomer sequence and side reactions for the synthesis of a PLGA-PEG-PLGA triblock copolymer. ROP was conducted under thermal control (100, 110 and 120 degrees C) or in the presence of the catalysts tin(ii) 2-ethylhexanoate (Sn(Oct)(2)) and tin(ii) trifluoromethanesulfonate (Sn(OTf)(2)) at various catalyst loadings. The reactions were monitored via proton nuclear magnetic resonance (H-1 NMR) spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI ToF MS). While ROP proceeded faster with catalysts than the uncatalysed reaction at an equivalent temperature, the onset of side reactions typically occurred at much lower monomer conversions and to a greater extent, resulting in a plateau in the molecular weight and broadening of the molecular weight distribution. For Sn(Oct)(2) catalysed ROP, an increase in the catalyst loading had negligible effect on the occurrence or extent of side reactions, but led to a surprising increase in the rate of polymerisation of L relative to G. Sn(OTf)(2) catalysed ROP resulted in significant side reactions from the start of the polymerisation. These results provide insights into the influence of polymerisation conditions on the microstructure of PLGA-PEG-PLGA triblock copolymers that may prove useful for their improved and controlled synthesis.
引用
收藏
页码:2229 / 2237
页数:9
相关论文
共 50 条
  • [31] In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
    Yoshioka, Taiyo
    Kawazoe, Naoki
    Tateishi, Tetsuya
    Chen, Guoping
    BIOMATERIALS, 2008, 29 (24-25) : 3438 - 3443
  • [32] Emerging trends in Poly(lactic-co-glycolic) acid bionanoarchitectures and applications
    Idumah, Christopher Igwe
    CLEANER MATERIALS, 2022, 5
  • [33] Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents
    Amber L. Doiron
    Kimberly A. Homan
    Stanislav Emelianov
    Lisa Brannon-Peppas
    Pharmaceutical Research, 2009, 26 : 674 - 682
  • [34] Latent, Immunosuppressive Nature of Poly(lactic-co-glycolic acid) Microparticles
    Allen, Riley P.
    Bolandparvaz, Amir
    Ma, Jeffrey A.
    Manickam, Vishal A.
    Lewis, Jamal S.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (03): : 900 - 918
  • [35] Prediction of microclimate pH in poly(lactic-co-glycolic acid) films
    Ding, AG
    Shenderova, A
    Schwendeman, SP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (16) : 5384 - 5390
  • [36] Poly (lactic-co-glycolic acid) as a controlled release delivery device
    Lim, Tee Yong
    Poh, Chye Khoon
    Wang, W.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 (08) : 1669 - 1675
  • [37] In Vitro Biodegradation of Poly(Lactic-co-Glycolic Acid) Porous Scaffolds
    Chen, Guoping
    Yoshioka, Taiyo
    Kawazoe, Naoki
    Tateishi, Tetsuya
    BIOMATERIALS IN ASIA: IN COMMEMORATION OF THE 1ST ASIAN BIOMATERIALS CONGRESS, 2008, : 467 - 481
  • [38] Cartilage suspension using a poly (lactic-co-glycolic) acid system
    Jeong, Jae Hoon
    Kim, Byung Hwi
    Kim, Dae Hee
    Kim, Baek-Kyu
    Pak, Chang Sik
    Kim, Eun Hee
    Heo, Chan Yeong
    JOURNAL OF PLASTIC RECONSTRUCTIVE AND AESTHETIC SURGERY, 2017, 70 (07): : 937 - 945
  • [39] In vitro degradation of poly(lactic-co-glycolic) acid random copolymers
    Vey, Elisabeth
    Miller, Aline F.
    Claybourn, Mike
    Saiani, Alberto
    MACROMOLECULAR SYMPOSIA, 2007, 251 : 81 - 87
  • [40] Customizing poly(lactic-co-glycolic acid) particles for biomedical applications
    Swider, Edyta
    Koshkina, Olga
    Tel, Jurjen
    Cruz, Luis J.
    de Vries, I. Jolanda M.
    Srinivas, Mangala
    ACTA BIOMATERIALIA, 2018, 73 : 38 - 51