A Conservative and Efficient Model for Grain Boundaries of Solid Electrolytes in a Continuum Model for Solid-State Batteries

被引:1
|
作者
Sinzig, Stephan [1 ,2 ]
Schmidt, Christoph P. [1 ]
Wall, Wolfgang A. [1 ]
机构
[1] Tech Univ Munich, Inst Computat Mech, TUM Sch Engn & Design, Dept Engn Phys & Computat, Munich, Germany
[2] TUMint Energy Res GmbH, D-85748 Garching, Germany
关键词
Grain Boundaries; Theory and Modelling; Resolved Microstructures; All-Solid-State Batteries; LI-ION-TRANSPORT; CONDUCTIVITY; DENDRITE; SULFIDE; GROWTH; BULK;
D O I
10.1149/1945-7111/ad36e4
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A formulation is presented to model ionic conduction efficiently inside, i.e., across and along grain boundaries. Efficiency and accuracy are achieved by reducing it to a two-dimensional manifold while guaranteeing the conservation of mass and charge at the intersection of multiple grain boundaries. The formulation treats the electric field and the electric current as independent solution variables. We elaborate on the numerical challenges this formulation implies and compare the computed solution with results from an analytical solution by quantifying the convergence toward the exact solution. Towards the end of this work, the model is firstly applied to setups with extreme values of crucial parameters of grain boundaries to study the influence of the ionic conduction in the grain boundary on the overall battery cell voltage and, secondly, to a realistic microstructure to show the capabilities of the formulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Advances in sulfide solid-state electrolytes for lithium batteries
    Yao, Mingxuan
    Shi, Jiangtao
    Luo, Anhong
    Zhang, Zheqi
    Zhu, Guisheng
    Xu, Huarui
    Xu, Jiwen
    Jiang, Li
    Jiang, Kunpeng
    ENERGY STORAGE MATERIALS, 2025, 75
  • [42] Perovskite Solid-State Electrolytes for Lithium Metal Batteries
    Yan, Shuo
    Yim, Chae-Ho
    Pankov, Vladimir
    Bauer, Mackenzie
    Baranova, Elena
    Weck, Arnaud
    Merati, Ali
    Abu-Lebdeh, Yaser
    BATTERIES-BASEL, 2021, 7 (04):
  • [43] Solid-State Electrolytes for Lithium-Air Batteries
    Qi, Xianhai
    Liu, Dapeng
    Yu, Haohan
    Fu, Zerui
    Zhang, Yu
    BATTERIES & SUPERCAPS, 2024,
  • [44] Dislocations in ceramic electrolytes for solid-state Li batteries
    Porz, L.
    Knez, D.
    Scherer, M.
    Ganschow, S.
    Kothleitner, G.
    Rettenwander, D.
    SCIENTIFIC REPORTS, 2021, 11 (01) : 8949
  • [45] Air Stability of Solid-State Sulfide Batteries and Electrolytes
    Lu, Pushun
    Wu, Dengxu
    Chen, Liquan
    Li, Hong
    Wu, Fan
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (03)
  • [46] Air Stability of Solid-State Sulfide Batteries and Electrolytes
    Pushun Lu
    Dengxu Wu
    Liquan Chen
    Hong Li
    Fan Wu
    Electrochemical Energy Reviews, 2022, 5
  • [47] Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives
    Wang, Liguang
    Li, Jun
    Lu, Guolong
    Li, Wenyan
    Tao, Qiqi
    Shi, Caihong
    Jin, Huile
    Chen, Guang
    Wang, Shun
    FRONTIERS IN MATERIALS, 2020, 7
  • [48] Processing thin but robust electrolytes for solid-state batteries
    Moran Balaish
    Juan Carlos Gonzalez-Rosillo
    Kun Joong Kim
    Yuntong Zhu
    Zachary D. Hood
    Jennifer L. M. Rupp
    Nature Energy, 2021, 6 : 227 - 239
  • [49] Dislocations in ceramic electrolytes for solid-state Li batteries
    L. Porz
    D. Knez
    M. Scherer
    S. Ganschow
    G. Kothleitner
    D. Rettenwander
    Scientific Reports, 11
  • [50] Nanocomposite Ionogel Electrolytes for Solid-State Rechargeable Batteries
    Hyun, Woo Jin
    Thomas, Cory M.
    Hersam, Mark C.
    ADVANCED ENERGY MATERIALS, 2020, 10 (36)