Spatially explicit Bayesian hierarchical models improve estimates of avian population status and trends

被引:2
|
作者
Smith, Adam C. [1 ]
Binley, Allison D. [2 ]
Daly, Lindsay [1 ]
Edwards, Brandon P. M. [1 ,2 ]
Ethier, Danielle [2 ,3 ]
Frei, Barbara [4 ]
Iles, David [1 ]
Meehan, Timothy D. [5 ]
Michel, Nicole L. [5 ]
Smith, Paul A. [6 ]
机构
[1] Environm Climate Change Canada, Canadian Wildlife Serv, Ottawa, ON, Canada
[2] Carleton Univ, Dept Biol, Ottawa, ON, Canada
[3] Birds Canada, Port Rowan, ON, Canada
[4] Environm Climate Change Canada, Wildlife Res Div, Montreal, PQ, Canada
[5] Natl Audubon Soc, New York, NY USA
[6] Environm Climate Change Canada, Wildlife Res Div, Ottawa, ON, Canada
关键词
abundance; Bayesian; biological monitoring; GAM; hierarchical; iCAR; spatially explicit; abondance; bayesien; suivi biologique; hierarchique; spatialement explicite; BREEDING BIRD SURVEY; AUTOREGRESSIVE MODELS; SHOREBIRDS; DECLINES; TEMPERATURE; STRATEGIES; RESPONSES; DIPPER;
D O I
10.1093/ornithapp/duad056
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Population trend estimates form the core of avian conservation assessments in North America and indicate important changes in the state of the natural world. The models used to estimate these trends would be more efficient and informative for conservation if they explicitly considered the spatial locations of the monitoring data. We created spatially explicit versions of some standard status and trend models applied to long-term monitoring data for birds across North America. We compared the spatial models to simpler non-spatial versions of the same models, fitting them to simulated data and real data from 3 broad-scale monitoring programs: the North American Breeding Bird Survey (BBS), the Christmas Bird Count, and a collection of programs we refer to as Migrating Shorebird Surveys. All the models generally reproduced the simulated trends and population trajectories when there were many data, and the spatial models performed better when there were fewer data and in locations where the local trends differed from the range-wide means. When fit to real data, the spatial models revealed interesting spatial patterns in trend, such as recent population increases along the Appalachian Mountains for the Eastern Whip-poor-will (Antrostomus vociferus), that were much less apparent in results from the non-spatial versions. The spatial models also had higher out-of-sample predictive accuracy than the non-spatial models for a selection of species using BBS data. The spatially explicit sharing of information allows fitting the models with much smaller strata, allowing for finer-grained patterns in trends. Spatially informed trends will facilitate more locally relevant conservation, highlight areas of conservation successes and challenges, and help generate and test hypotheses about the spatially dependent drivers of population change. center dot We created population trend models that share information on species abundance and trend among neighboring regions and compared those to models without spatial information.center dot Trends and population trajectories from the spatial models were more accurate, precise, and better predicted future observations than the non-spatial models.center dot Spatial information allows for finer-scale stratifications, producing more detailed spatial patterns and highlighting areas for local conservation.center dot The predictions from these models (trends, trajectories, maps of patterns in trends, etc.) will improve our understanding of the status of bird populations in time and space, and guide future research into the drivers of ongoing avian population declines. Les estimations des tendances des populations constituent le c oe ur des evaluations pour la conservation aviaire en Amerique du Nord et indiquent des changements importants de l'etat de l'environnement naturel. Les modeles utilises pour estimer ces tendances seraient plus efficaces et plus instructifs pour la conservation s'ils prenaient explicitement en compte les emplacements spatiaux des donnees de suivi. Nous avons cree des versions spatialement explicites de certains modeles standards de statut et de tendance appliques aux donnees de suivi a long terme des oiseaux en Amerique du Nord. Nous avons compare les modeles spatiaux a des versions non spatiales plus simples des memes modeles, en les adaptant a des donnees simulees et a des donnees reelles provenant de trois programmes de suivi a grande echelle : le Releve des oiseaux nicheurs de l'Amerique du Nord (BBS), le Recensement des oiseaux de Noel (CBC) et un ensemble de programmes que nous appelons Releves d'oiseaux de rivage migrateurs (MSS). Tous les modeles ont generalement reproduit les tendances simulees et les trajectoires demographiques lorsqu'il y avait beaucoup de donnees, et les modeles spatiaux ont donne de meilleurs resultats lorsqu'il y avait moins de donnees et pour des endroits ou les tendances locales differaient des moyennes a l'echelle de l'aire de repartition. Lorsqu'ils ont ete ajustes aux donnees reelles, les modeles spatiaux ont revele des patrons spatiaux interessants dans les tendances, telles que les recentes augmentations de population le long des Appalaches pour Antrostomus vociferus, qui etaient beaucoup moins apparents dans les resultats des versions non spatiales. Les modeles spatiaux avaient aussi une plus grande precision predictive hors echantillon que les modeles non spatiaux pour une selection d'especes utilisant les donnees du BBS. Le partage spatialement explicite des informations permet d'ajuster les modeles avec des strates beaucoup plus petites, ce qui permet d'obtenir des tendances plus fines. Les tendances tenant compte des donnees spatiales faciliteront une conservation plus pertinente au niveau local, mettront en evidence les succes et les defis dans les aires de conservation, et aideront a generer et a tester des hypotheses sur les facteurs de changement demographique spatialement dependants.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] LINKING CONTEMPORARY VEGETATION MODELS WITH SPATIALLY EXPLICIT ANIMAL POPULATION-MODELS
    HOLT, RD
    PACALA, SW
    SMITH, TW
    LIU, JG
    ECOLOGICAL APPLICATIONS, 1995, 5 (01) : 20 - 27
  • [22] Inferring Past Demography Using Spatially Explicit Population Genetic Models
    Ray, Nicolas
    Excoffier, Laurent
    HUMAN BIOLOGY, 2009, 81 (2-3) : 141 - 157
  • [23] SPATIALLY EXPLICIT POPULATION-MODELS - CURRENT FORMS AND FUTURE USES
    DUNNING, JB
    STEWART, DJ
    DANIELSON, BJ
    NOON, BR
    ROOT, TL
    LAMBERSON, RH
    STEVENS, EE
    ECOLOGICAL APPLICATIONS, 1995, 5 (01) : 3 - 11
  • [24] Incorporating citizen science data in spatially explicit integrated population models
    Sun, Catherine C.
    Royle, J. Andrew
    Fuller, Angela K.
    ECOLOGY, 2019, 100 (09)
  • [25] Graph theory as a proxy for spatially explicit population models in conservation planning
    Minor, Emily S.
    Urban, Dean L.
    ECOLOGICAL APPLICATIONS, 2007, 17 (06) : 1771 - 1782
  • [26] Bayesian estimation of partial population continuity using ancient DNA and spatially explicit simulations
    Silva, Nuno Miguel
    Rio, Jeremy
    Kreutzer, Susanne
    Papageorgopoulou, Christina
    Currat, Mathias
    EVOLUTIONARY APPLICATIONS, 2018, 11 (09): : 1642 - 1655
  • [27] Indirect connectivity estimates of amphibian breeding wetlands from spatially explicit occupancy models
    Brooks, George C.
    Smith, Jennifer A.
    Frimpong, Emmanuel A.
    Gorman, Thomas A.
    Chandler, Houston C.
    Haas, Carola A.
    AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2019, 29 (11) : 1815 - 1825
  • [28] Dynamically Updated Spatially Varying Parameterizations of Hierarchical Bayesian Models for Spatial Data
    Bass, Mark R.
    Sahu, Sujit K.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (01) : 105 - 116
  • [29] Spatially-Explicit Bayesian Information Entropy Metrics for Calibrating Landscape Transformation Models
    Alexandridis, Kostas
    Pijanowski, Bryan C.
    ENTROPY, 2013, 15 (07) : 2480 - 2509
  • [30] Spatially Explicit Burden Estimates of Malaria in Tanzania: Bayesian Geostatistical Modeling of the Malaria Indicator Survey Data
    Gosoniu, Laura
    Msengwa, Amina
    Lengeler, Christian
    Vounatsou, Penelope
    PLOS ONE, 2012, 7 (05):