Machine learning estimation of human body time using metabolomic profiling

被引:11
|
作者
Woelders, Tom [1 ,5 ]
Revell, Victoria L. [2 ,6 ]
Middleton, Benita [2 ]
Ackermann, Katrin [3 ,7 ]
Kayser, Manfred [3 ]
Raynaud, Florence I. [4 ]
Skene, Debra J. [2 ]
Hut, Roelof A. [1 ]
机构
[1] Univ Groningen, Groningen Inst Evolutionary Life Sci, Chronobiol Unit, NL-9700 CC Groningen, Netherlands
[2] Univ Surrey, Fac Hlth & Med Sci, Chronobiol, Guildford GU2 7XH, England
[3] Erasmus MC, Dept Genet Identificat, NL-3000 CA Rotterdam, Netherlands
[4] Canc Res UK, Inst Canc Res, Div Canc Therapeut, Canc Therapeut Unit, London SM2 5NG, England
[5] Univ Manchester, Fac Biol Med & Hlth, Sch Biol, Div Neurosci & Expt Psychol, Manchester M13 9PT, England
[6] Univ Surrey, Fac Hlth & Med Sci, Surrey Sleep Res Ctr, Guildford GU2 7XP, England
[7] Univ St Andrews, Biomed Sci Res Complex & Ctr Magnet Resonance, St Andrews KY16 9ST, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
metabolomics; dim light melatonin onset; machine learning; human body time; circadian phase; SLEEP-DEPRIVATION; EXPRESSION; PHASE; METABOLITES; RHYTHMICITY; MELATONIN;
D O I
10.1073/pnas.2212685120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Metabolomic profiling of human bladder tissue extracts
    Ossolinski, Krzysztof
    Ruman, Tomasz
    Copie, Valerie
    Tripet, Brian P.
    Kolodziej, Artur
    Plaza-Altamer, Aneta
    Ossolinska, Anna
    Ossolinski, Tadeusz
    Krupa, Zuzanna
    Niziol, Joanna
    METABOLOMICS, 2024, 20 (01)
  • [22] Metabolomic profiling of human bladder tissue extracts
    Krzysztof Ossoliński
    Tomasz Ruman
    Valérie Copié
    Brian P. Tripet
    Artur Kołodziej
    Aneta Płaza-Altamer
    Anna Ossolińska
    Tadeusz Ossoliński
    Zuzanna Krupa
    Joanna Nizioł
    Metabolomics, 20
  • [23] Metabolomic profiling of human plasma in pancreatic cancer using pressurized capillary electrochromatography
    Zhang, Huiping
    Wang, Yan
    Gu, Xue
    Zhou, Junyi
    Yan, Chao
    ELECTROPHORESIS, 2011, 32 (3-4) : 340 - 347
  • [24] Predicting Bug Estimation Time for Newly Reported Bug Using Machine Learning Algorithms
    Sawarkar, Rucha
    Nagwani, Naresh Kumar
    Kumar, Sanjay
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [25] Correction of the travel time estimation for ambulances of the red cross Tijuana using machine learning
    Torres, Noelia
    Trujillo, Leonardo
    Maldonado, Yazmin
    Vera, Carlos
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [26] Time period estimation of masonry infilled RC frames using machine learning techniques
    Somala, Surendra Nadh
    Karthikeyan, Karthika
    Mangalathu, Sujith
    STRUCTURES, 2021, 34 : 1560 - 1566
  • [27] Estimation of correlation matrices from limited time series data using machine learning
    Easaw, Nikhil
    Lee, Woo Seok
    Lohiya, Prashant Singh
    Jalan, Sarika
    Pradhan, Priodyuti
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 71
  • [28] Contact State Estimation using Machine Learning
    Jamali, Nawid
    Kormushev, Petar
    Caldwell, Darwin G.
    2013 OCEANS - SAN DIEGO, 2013,
  • [29] Texture Estimation Using Thermography and Machine Learning
    Aujeszky, Tamas
    Korres, Georgios
    Eid, Mohamad
    Khorrami, Farshad
    2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019), 2019, : 107 - 112
  • [30] Using Machine Learning for Explosion Yield Estimation
    Stroujkova, Anastasia
    Leidig, Mark
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2022, 112 (03) : 1397 - 1415