Machine learning estimation of human body time using metabolomic profiling

被引:11
|
作者
Woelders, Tom [1 ,5 ]
Revell, Victoria L. [2 ,6 ]
Middleton, Benita [2 ]
Ackermann, Katrin [3 ,7 ]
Kayser, Manfred [3 ]
Raynaud, Florence I. [4 ]
Skene, Debra J. [2 ]
Hut, Roelof A. [1 ]
机构
[1] Univ Groningen, Groningen Inst Evolutionary Life Sci, Chronobiol Unit, NL-9700 CC Groningen, Netherlands
[2] Univ Surrey, Fac Hlth & Med Sci, Chronobiol, Guildford GU2 7XH, England
[3] Erasmus MC, Dept Genet Identificat, NL-3000 CA Rotterdam, Netherlands
[4] Canc Res UK, Inst Canc Res, Div Canc Therapeut, Canc Therapeut Unit, London SM2 5NG, England
[5] Univ Manchester, Fac Biol Med & Hlth, Sch Biol, Div Neurosci & Expt Psychol, Manchester M13 9PT, England
[6] Univ Surrey, Fac Hlth & Med Sci, Surrey Sleep Res Ctr, Guildford GU2 7XP, England
[7] Univ St Andrews, Biomed Sci Res Complex & Ctr Magnet Resonance, St Andrews KY16 9ST, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
metabolomics; dim light melatonin onset; machine learning; human body time; circadian phase; SLEEP-DEPRIVATION; EXPRESSION; PHASE; METABOLITES; RHYTHMICITY; MELATONIN;
D O I
10.1073/pnas.2212685120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An Individualized Machine Learning Approach for Human Body Weight Estimation Using Smart Shoe Insoles
    Sanghavi, Foram
    Jinadu, Obafemi
    Oludare, Victor
    Panetta, Karen
    Kezebou, Landry
    Roberts, Susan B.
    SENSORS, 2023, 23 (17)
  • [2] Estimation of body fat percentage using hybrid machine learning algorithms
    Ucar, Muhammed Kursad
    Ucar, Zeliha
    Koksal, Fatih
    Daldal, Nihat
    MEASUREMENT, 2021, 167
  • [3] Human Body Odor Based Authentication Using Machine Learning
    Yang, Bin
    Lee, Wonjun
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1707 - 1714
  • [4] Metabolomic profiling of biomarkers associated with preterm birth from infants in low resource settings using machine learning
    Ward, V.
    Maric, I.
    Adhikari, K.
    Mujuru, H.
    Chimhini, G.
    Otieno, N.
    Saha, S. K.
    Hawken, S.
    Chakraborty, P.
    Wilson, K.
    Wong, R. J.
    Shaw, G. M.
    Stevenson, D. K.
    Darmstadt, G. L.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2025, 73 (01) : 263 - 264
  • [5] Estimation of time-variable friction parameters using machine learning
    Ishiyama, Ryo
    Fukuyama, Eiichi
    Enescu, Bogdan
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 236 (01) : 395 - 412
  • [6] Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning
    Brorsen, Lauritz F.
    Mckenzie, James S.
    Pinto, Fernanda E.
    Glud, Martin
    Hansen, Harald S.
    Haedersdal, Merete
    Takats, Zoltan
    Janfelt, Christian
    Lerche, Catharina M.
    EXPERIMENTAL DERMATOLOGY, 2024, 33 (07)
  • [7] Nanosensor Location Estimation in the Human Circulatory System Using Machine Learning
    Gomez, Jorge Torres
    Kuestner, Anke
    Simonjan, Jennifer
    Unluturk, Bige Deniz
    Dressler, Falko
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2022, 21 : 663 - 673
  • [8] LLR estimation using machine learning
    Mostari, Latifa
    Goupil, Alban
    Taleb-Ahmed, Abdelmalik
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 230 - 236
  • [9] Enhancing Influenza Detection through Integrative Machine Learning and Nasopharyngeal Metabolomic Profiling: A Comprehensive Study
    Sumon, Md. Shaheenur Islam
    Hossain, Md Sakib Abrar
    Al-Sulaiti, Haya
    Yassine, Hadi M.
    Chowdhury, Muhammad E. H.
    DIAGNOSTICS, 2024, 14 (19)
  • [10] Microbiota and metabolomic profiling coupled with machine learning to identify biomarkers and drug targets in nasopharyngeal carcinoma
    Liu, Junsong
    Xu, Chongwen
    Wang, Rui
    Huang, Jianhua
    Zhao, Ruimin
    Wang, Rui
    FRONTIERS IN PHARMACOLOGY, 2025, 16