Assessing the Feasibility of Deep Learning-Based Attenuation Correction using Photon Emission Information in 18F-FDG PET Images for Dedicated Head and Neck PET Scanners

被引:0
|
作者
Mofrad, M. Shahrbabaki [1 ]
Ghafari, A. [1 ]
Tehranizadeh, A. Amiri [2 ]
Ay, M. [1 ]
Farzenefar, S. [1 ]
Sheikhzadeh, P. [1 ]
机构
[1] Univ Tehran Med Sci, Tehran, Iran
[2] Mashhad Univ Med Sci, Mashhad, Razavi Khorasan, Iran
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-0743
引用
收藏
页码:S726 / S726
页数:1
相关论文
共 50 条
  • [41] External validation of deep learning-based attenuation correction for chest FDG PET/MRI using Zero-TE MRI and unpaired PET/CT data
    Nogami, M.
    Matsuo, H.
    Tachibana, M.
    Inukai, J. I.
    Zeng, F.
    Kurimoto, T.
    Kubo, K.
    Okazawa, H.
    Murakami, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S131 - S132
  • [42] Deep learning-based classification and segmentation of whole-body 18F-FDG PET/CT examinations using manually generated segmentation masks
    Steube, D.
    Hillenhagen, H.
    Stilgenbauer, S.
    Beer, A. J.
    Beer, M.
    Goetz, M.
    Thaiss, W.
    Glatting, G.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S769 - S769
  • [43] Atypical 18F-FDG PET-CT uptake in the head and neck; a case-based pictorial review
    Childs, Lucy
    Thompson, Andrew
    Jones, Huw
    Hameeduddin, Ayshea
    Ghufoor, Khalid
    Adams, Ashok
    CLINICAL IMAGING, 2018, 49 : 136 - 143
  • [44] Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients
    Olin, Anders B.
    Hansen, Adam E.
    Rasmussen, Jacob H.
    Jakoby, Bjoern
    Berthelsen, Anne K.
    Ladefoged, Claes N.
    Kjaer, Andreas
    Fischer, Barbara M.
    Andersen, Flemming L.
    EJNMMI PHYSICS, 2022, 9 (01)
  • [45] 18F-FDG PET/CT-Based Prognostic Survival Model After Surgery for Head and Neck Cancer
    Creff, Gwenaelle
    Jegoux, Franck
    Palard, Xavier
    Depeursinge, Adrien
    Abgral, Ronan
    Marianowski, Remi
    Leclere, Jean-Christophe
    Eugene, Thomas
    Malard, Olivier
    De Crevoisier, Renaud
    Devillers, Anne
    Castelli, Joel
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (09) : 1378 - 1385
  • [46] A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images
    Wenting Wei
    Guorong Jia
    Zhongyi Wu
    Tao Wang
    Heng Wang
    Kezhen Wei
    Chao Cheng
    Zhaobang Liu
    Changjing Zuo
    Japanese Journal of Radiology, 2023, 41 : 417 - 427
  • [47] Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients
    Anders B. Olin
    Adam E. Hansen
    Jacob H. Rasmussen
    Björn Jakoby
    Anne K. Berthelsen
    Claes N. Ladefoged
    Andreas Kjær
    Barbara M. Fischer
    Flemming L. Andersen
    EJNMMI Physics, 9
  • [48] A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images
    Wei, Wenting
    Jia, Guorong
    Wu, Zhongyi
    Wang, Tao
    Wang, Heng
    Wei, Kezhen
    Cheng, Chao
    Liu, Zhaobang
    Zuo, Changjing
    JAPANESE JOURNAL OF RADIOLOGY, 2023, 41 (04) : 417 - 427
  • [49] Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners
    Reuze, Sylvain
    Orlhac, Fanny
    Chargari, Cyrus
    Nioche, Christophe
    Limkin, Elaine
    Riet, Francois
    Escande, Alexandre
    Haie-Meder, Christine
    Dercle, Laurent
    Gouy, Sebastien
    Buvat, Irene
    Deutsch, Eric
    Robert, Charlotte
    ONCOTARGET, 2017, 8 (26) : 43169 - 43179
  • [50] Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks
    Karim Armanious
    Tobias Hepp
    Thomas Küstner
    Helmut Dittmann
    Konstantin Nikolaou
    Christian La Fougère
    Bin Yang
    Sergios Gatidis
    EJNMMI Research, 10