Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients

被引:7
|
作者
Saalfeld, Sylvia [1 ,2 ]
Kreher, Robert [1 ,2 ]
Hille, Georg [1 ,2 ]
Niemann, Uli [3 ]
Hinnerichs, Mattes [4 ]
Oecal, Osman [5 ]
Schuette, Kerstin [6 ,7 ]
Zech, Christoph J. [8 ]
Loewe, Christian [9 ]
van Delden, Otto [10 ]
Vandecaveye, Vincent [11 ]
Verslype, Chris [12 ]
Gebauer, Bernhard [13 ]
Sengel, Christian [14 ]
Bargellini, Irene [15 ]
Iezzi, Roberto [16 ,17 ]
Berg, Thomas [18 ]
Kluempen, Heinz J. [19 ]
Benckert, Julia [20 ]
Gasbarrini, Antonio [21 ]
Amthauer, Holger [22 ,23 ,24 ]
Sangro, Bruno [25 ,26 ]
Malfertheiner, Peter [27 ]
Preim, Bernhard [1 ,2 ]
Ricke, Jens [5 ]
Seidensticker, Max [5 ]
Pech, Maciej [4 ]
Surov, Alexey [28 ]
机构
[1] Univ Magdeburg, Res Campus STIMULATE, Magdeburg, Germany
[2] Univ Magdeburg, Dept Simulat & Graph, Magdeburg, Germany
[3] Univ Magdeburg, Univ Lib, Magdeburg, Germany
[4] OvGU Magdeburg, Dept Radiol & Nucl Med, Magdeburg, Germany
[5] LMU Univ Hosp, Dept Radiol, Munich, Germany
[6] Niels Stensen Kliniken Marienhosp, Dept Internal Med & Gastroenterol, Osnabruck, Germany
[7] Med Hsch Hannover MHH, Klin Gastroenterol Hepatol & Endokrinol, Hannover, Germany
[8] Univ Basel, Univ Hosp Basel, Dept Radiol & Nucl Med, Basel, Switzerland
[9] Med Univ Vienna, Dept Bioimaging & Image Guided Therapy, Sect Cardiovasc & Intervent Radiol, Vienna, Austria
[10] Acad Univ Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[11] Univ Hosp Leuven, Dept Radiol, Leuven, Belgium
[12] Univ Hosp Leuven, Dept Digest Oncol, Leuven, Belgium
[13] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[14] Grenoble Univ Hosp, Dept Radiol, La Tronche, France
[15] Candiolo Canc Inst, Diagnost & Intervent Radiol, Turin, Italy
[16] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Diagnost Immagini Radioterapia Oncol, UOC Radiol Urgenza & Interventist, Rome, Italy
[17] Univ Cattolica Sacro Cuore, Rome, Italy
[18] Univ Klinikum Leipzig, Klin & Poliklin Gastroenterol, Sekt Hepatol, Leipzig, Germany
[19] Univ Amsterdam, Dept Med Oncol, Med Ctr, Amsterdam, Netherlands
[20] Charite Univ Med Berlin, Dept Hepatol & Gastroenterol, Campus Virchow Klinikum, Berlin, Germany
[21] Univ Cattolica Sacro Cuore, Fdn Policlin Univ Gemelli IRCCS, Rome, Italy
[22] Charite Univ Med Berlin, Dept Nucl Med, Berlin, Germany
[23] Free Univ Berlin, Berlin, Germany
[24] Humboldt Univ, Berlin, Germany
[25] Clin Univ Navarra, Liver Unit, Pamplona, Spain
[26] CIBEREHD, Pamplona, Spain
[27] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Med 2, Munich, Germany
[28] Ruhr Univ Bochum, Johannes Wesling Univ Hosp, Dept Radiol Neuroradiol & Nucl Med, Bochum, Germany
关键词
body composition; HCC; radiomics; sarcopenia; VISCERAL ADIPOSITY; SKELETAL-MUSCLE; ASSOCIATION; SARCOPENIA; OUTCOMES; FAT; ACTIVATION; PREDICT; LEPTIN;
D O I
10.1002/jcsm.13315
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundParameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC). MethodsRadiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (n = 147) and (2) sorafenib and SIRT (n = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups. ResultsWe used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376-0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930-0.9134). ConclusionsParameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.
引用
收藏
页码:2301 / 2309
页数:9
相关论文
共 50 条
  • [41] Prognostic Factors and 10-Year Survival in Patients with Hepatocellular Carcinoma After Curative Hepatectomy
    Kim, Sung Hoon
    Choi, Sae Byeol
    Lee, Jae Gil
    Kim, Seung Up
    Park, Mi-Suk
    Kim, Do Young
    Choi, Jin Sub
    Kim, Kyung Sik
    JOURNAL OF GASTROINTESTINAL SURGERY, 2011, 15 (04) : 598 - 607
  • [42] Impact of COVID-19 on 1-Year Survival Outcomes in Hepatocellular Carcinoma: A Multicenter Cohort Study
    De Souza, Shuell
    de Jong, Jeffrey Kahol
    Perone, Ylenia
    Shetty, Shishir
    Qurashi, Maria
    Vithayathil, Mathew
    Shah, Tahir
    Ross, Paul
    Temperley, Laura
    Yip, Vincent S. S.
    Banerjee, Abhirup
    Bettinger, Dominik
    Sturm, Lukas
    Reeves, Helen L. L.
    Geh, Daniel
    Orr, James
    Allen, Benjamin
    Jones, Robert P. P.
    Sharma, Rohini
    CANCERS, 2023, 15 (13)
  • [43] Body Composition Changes in Hepatocellular Carcinoma: Prediction of Survival to Transcatheter Arterial Chemoembolization in Combination With Clinical Prognostic Factors
    Zheng, Xiaomin
    Cao, Feng
    Qian, Liting
    Dong, Jiangning
    CANCER CONTROL, 2021, 28
  • [44] Prediction of survival and analysis of prognostic factors for patients with AFP negative hepatocellular carcinoma: a population-based study
    Chengyu Liu
    Zikang Li
    Zhilei Zhang
    Jinlong Li
    Congxi Xu
    Yuming Jia
    Chong Zhang
    Wuhan Yang
    Wenchuan Wang
    Xiaojuan Wang
    Kuopeng Liang
    Li Peng
    Jitao Wang
    BMC Gastroenterology, 24
  • [45] Prediction of Survival and Analysis of Prognostic Factors for Patients With Combined Hepatocellular Carcinoma and Cholangiocarcinoma: A Population-Based Study
    Wang, Jitao
    Li, Zhi
    Liao, Yong
    Li, Jinlong
    Dong, Hui
    Peng, Hao
    Xu, Wenjing
    Fan, Zhe
    Gao, Fengxiao
    Liu, Chengyu
    Liu, Dengxiang
    Zhang, Yewei
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [46] Radiomics-based model using gadoxetic acid disodium-enhanced MR images: associations with recurrence-free survival of patients with hepatocellular carcinoma treated by surgical resection
    Ling Zhang
    Jianming Hu
    Jingyu Hou
    Xinhua Jiang
    Lei Guo
    Li Tian
    Abdominal Radiology, 2021, 46 : 3845 - 3854
  • [47] Five-CpG-based prognostic signature for predicting survival in hepatocellular carcinoma patients
    Fang, Feng
    Wang, Xiaoqing
    Song, Tianqiang
    CANCER BIOLOGY & MEDICINE, 2018, 15 (04) : 425 - +
  • [48] A Prognostic Nomogram Based on Immune Scores Predicts Postoperative Survival for Patients with Hepatocellular Carcinoma
    Wang, Jukun
    Zhang, Chao
    Li, Ang
    Cao, Feng
    Liu, Dongbin
    Li, Fei
    Luo, Tao
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [49] Prediction of survival and analysis of prognostic factors for patients with AFP negative hepatocellular carcinoma: a population-based study
    Liu, Chengyu
    Li, Zikang
    Zhang, Zhilei
    Li, Jinlong
    Xu, Congxi
    Jia, Yuming
    Zhang, Chong
    Yang, Wuhan
    Wang, Wenchuan
    Wang, Xiaojuan
    Liang, Kuopeng
    Peng, Li
    Wang, Jitao
    BMC GASTROENTEROLOGY, 2024, 24 (01)
  • [50] Five-CpG-based prognostic signature for predicting survival in hepatocellular carcinoma patients
    Feng Fang
    Xiaoqing Wang
    Tianqiang Song
    Cancer Biology & Medicine, 2018, (04) : 425 - 433