Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients

被引:7
|
作者
Saalfeld, Sylvia [1 ,2 ]
Kreher, Robert [1 ,2 ]
Hille, Georg [1 ,2 ]
Niemann, Uli [3 ]
Hinnerichs, Mattes [4 ]
Oecal, Osman [5 ]
Schuette, Kerstin [6 ,7 ]
Zech, Christoph J. [8 ]
Loewe, Christian [9 ]
van Delden, Otto [10 ]
Vandecaveye, Vincent [11 ]
Verslype, Chris [12 ]
Gebauer, Bernhard [13 ]
Sengel, Christian [14 ]
Bargellini, Irene [15 ]
Iezzi, Roberto [16 ,17 ]
Berg, Thomas [18 ]
Kluempen, Heinz J. [19 ]
Benckert, Julia [20 ]
Gasbarrini, Antonio [21 ]
Amthauer, Holger [22 ,23 ,24 ]
Sangro, Bruno [25 ,26 ]
Malfertheiner, Peter [27 ]
Preim, Bernhard [1 ,2 ]
Ricke, Jens [5 ]
Seidensticker, Max [5 ]
Pech, Maciej [4 ]
Surov, Alexey [28 ]
机构
[1] Univ Magdeburg, Res Campus STIMULATE, Magdeburg, Germany
[2] Univ Magdeburg, Dept Simulat & Graph, Magdeburg, Germany
[3] Univ Magdeburg, Univ Lib, Magdeburg, Germany
[4] OvGU Magdeburg, Dept Radiol & Nucl Med, Magdeburg, Germany
[5] LMU Univ Hosp, Dept Radiol, Munich, Germany
[6] Niels Stensen Kliniken Marienhosp, Dept Internal Med & Gastroenterol, Osnabruck, Germany
[7] Med Hsch Hannover MHH, Klin Gastroenterol Hepatol & Endokrinol, Hannover, Germany
[8] Univ Basel, Univ Hosp Basel, Dept Radiol & Nucl Med, Basel, Switzerland
[9] Med Univ Vienna, Dept Bioimaging & Image Guided Therapy, Sect Cardiovasc & Intervent Radiol, Vienna, Austria
[10] Acad Univ Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[11] Univ Hosp Leuven, Dept Radiol, Leuven, Belgium
[12] Univ Hosp Leuven, Dept Digest Oncol, Leuven, Belgium
[13] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[14] Grenoble Univ Hosp, Dept Radiol, La Tronche, France
[15] Candiolo Canc Inst, Diagnost & Intervent Radiol, Turin, Italy
[16] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Diagnost Immagini Radioterapia Oncol, UOC Radiol Urgenza & Interventist, Rome, Italy
[17] Univ Cattolica Sacro Cuore, Rome, Italy
[18] Univ Klinikum Leipzig, Klin & Poliklin Gastroenterol, Sekt Hepatol, Leipzig, Germany
[19] Univ Amsterdam, Dept Med Oncol, Med Ctr, Amsterdam, Netherlands
[20] Charite Univ Med Berlin, Dept Hepatol & Gastroenterol, Campus Virchow Klinikum, Berlin, Germany
[21] Univ Cattolica Sacro Cuore, Fdn Policlin Univ Gemelli IRCCS, Rome, Italy
[22] Charite Univ Med Berlin, Dept Nucl Med, Berlin, Germany
[23] Free Univ Berlin, Berlin, Germany
[24] Humboldt Univ, Berlin, Germany
[25] Clin Univ Navarra, Liver Unit, Pamplona, Spain
[26] CIBEREHD, Pamplona, Spain
[27] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Med 2, Munich, Germany
[28] Ruhr Univ Bochum, Johannes Wesling Univ Hosp, Dept Radiol Neuroradiol & Nucl Med, Bochum, Germany
关键词
body composition; HCC; radiomics; sarcopenia; VISCERAL ADIPOSITY; SKELETAL-MUSCLE; ASSOCIATION; SARCOPENIA; OUTCOMES; FAT; ACTIVATION; PREDICT; LEPTIN;
D O I
10.1002/jcsm.13315
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundParameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC). MethodsRadiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (n = 147) and (2) sorafenib and SIRT (n = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups. ResultsWe used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376-0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930-0.9134). ConclusionsParameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.
引用
收藏
页码:2301 / 2309
页数:9
相关论文
共 50 条
  • [1] Prognostic Value of a CT Radiomics-Based Nomogram for the Overall Survival of Patients with Nonmetastatic BCLC Stage C Hepatocellular Carcinoma after Stereotactic Body Radiotherapy
    Wang, Lihong
    Yan, Danfang
    Shen, Liang
    Xie, Yalin
    Yan, Senxiang
    JOURNAL OF ONCOLOGY, 2023, 2023
  • [2] SURVIVAL AND BODY COMPOSITION ANALYSIS IN HEPATOCELLULAR CARCINOMA PATIENTS WITH MYOSTEATOSIS
    Gopaul, A.
    Stretch, C.
    Bathe, O.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2017, 186 : S20 - S21
  • [3] Development and validation of a radiomics-based method for macrovascular invasion prediction in hepatocellular carcinoma with prognostic implication
    Wei, Jingwei
    Fu, Sirui
    Zhang, Shuaitong
    Zhang, Jie
    Gu, Dongsheng
    Li, Xiaoqun
    Cheng, Xudong
    He, Xiaofeng
    Yan, Jianfeng
    Lu, Ligong
    Tian, Jie
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [4] A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma
    Cai, Wei
    He, Baochun
    Hu, Min
    Zhang, Wenyu
    Xiao, Deqiang
    Yu, Hao
    Song, Qi
    Xiang, Nan
    Yang, Jian
    He, Songshen
    Huang, Yaohuan
    Huang, Wenjie
    Jia, Fucang
    Fang, Chihua
    SURGICAL ONCOLOGY-OXFORD, 2019, 28 : 78 - 85
  • [5] Prognostic impact of body composition in hepatocellular carcinoma patients with immunotherapy
    Zhang, Lilong
    Li, Xinyi
    Wang, Kunpeng
    Wu, Min
    Liu, Wenhui
    Wang, Weixing
    ANNALS OF MEDICINE, 2024, 56 (01)
  • [6] RADIOMICS-BASED PREDICTION OF RECURRENCEFREE SURVIVAL IN OROPHARYNGEAL SQUAMOUS CELL CARCINOMA PATIENTS UNDERGOING CHEMORADIOTHERAPY: DEVELOPMENT AND VALIDATION OF A PROGNOSTIC MODEL
    Sit, Daegan
    Cui, Sunan
    Gensheimer, Michael
    Beadle, Beth
    Quynh-Thu Le
    Li, Ruijiang
    RADIOTHERAPY AND ONCOLOGY, 2024, 198 : S14 - S15
  • [7] Generalizable Radiomics-Based Deep Learning Model for the Survival Prediction of Nasopharyngeal Carcinoma Patients : an International Multicenter Analysis
    Dong, Y.
    Zhang, J.
    Cao, J.
    Huang, Y. H.
    Li, W.
    Xiong, T.
    Teng, X.
    Zhang, X.
    Ma, Z.
    Lam, S. K.
    Lee, F. K. H.
    Yip, W. Y. C.
    Au, K. H.
    Cai, J.
    MEDICAL PHYSICS, 2024, 51 (09) : 6579 - 6579
  • [8] A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation
    Peng, Wei
    Jiang, Xinhua
    Zhang, Weidong
    Hu, Jianmin
    Zhang, YaoJun
    Zhang, Ling
    ASIAN JOURNAL OF SURGERY, 2023, 46 (07) : 2689 - 2696
  • [9] Body Composition Features Predict Overall Survival in Patients With Hepatocellular Carcinoma
    Singal, Amit G.
    Zhang, Peng
    Waljee, Akbar K.
    Ananthakrishnan, Lakshmi
    Parikh, Neehar D.
    Sharma, Pratima
    Barman, Pranab
    Krishnamurthy, Venkataramu
    Wang, Lu
    Wang, Stewart C.
    Su, Grace L.
    CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, 2016, 7
  • [10] MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma
    Wang, Xiao-Hang
    Long, Liu-Hua
    Cui, Yong
    Jia, Angela Y.
    Zhu, Xiang-Gao
    Wang, Hong-Zhi
    Wang, Zhi
    Zhan, Chong-Ming
    Wang, Zhao-Hai
    Wang, Wei-Hu
    BRITISH JOURNAL OF CANCER, 2020, 122 (07) : 978 - 985