Modelling the laser surface hardening in a ferrite and pearlite initial microstructure

被引:2
|
作者
Castro Cerda, Felipe M. [1 ,5 ]
Goulas, Constantinos [2 ]
Jones, Dakota [3 ]
Kamyabi, Ata [3 ]
Hamre, Douglas [3 ]
Mendez, Patricio [4 ]
Wood, Gentry [3 ]
机构
[1] Univ Santiago Chile, Dept Met, Santiago, Chile
[2] Univ Twente, Fac Engn Technol ET, Dept Design Prod & Management, Enschede, Netherlands
[3] Div Apollo Machine & Welding Ltd, Apollo Clad Laser Cladding, Leduc, AB, Canada
[4] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
[5] Univ Santiago Chile, Dept Met, Estn Cent, Alameda 3363, Santiago 9170022, Chile
关键词
Laser heat treatment; Fast heating; Austenite; Martensite; Modelling; AUSTENITE; STEEL; PHASE;
D O I
10.1080/02670836.2023.2240101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present study explores the microstructure and the depth-dependence of hardness after a single pass laser heat-treatment. The initial microstructure was selected as ferrite and pearlite in different fractions, with the aim of studying low, medium, and high carbon steels. A modification of an existing model is proposed, whereby the cementite dissolution is incorporated to better reflect the microstructure evolution during the rapid thermal cycle. It is found that the predictions under the new paradigm show fair agreement with the experimental data. The new model indicates that the correct estimation of the composition of austenite near the transition zone produces a more accurate prediction of the hardness profile, reducing the overestimation obtained in previous works.
引用
收藏
页码:3123 / 3133
页数:11
相关论文
共 50 条
  • [41] Comparison on Tensile Characteristics of Plain C-Mn Steel with Ultrafine Grained Ferrite/Cementite Microstructure and Coarse Grained Ferrite/Pearlite Microstructure
    Tian, Yan
    Zhao, Mingchun
    Liu, Wenjian
    Zhang, Jimou
    Zhang, Min
    Li, Hongying
    Yin, Dengfeng
    Atrens, Andrej
    MATERIALS, 2021, 14 (09)
  • [42] Microstructure based flow stress model to predict machinability in ferrite-pearlite steels
    Saez-de-Buruaga, M.
    Aristimuno, P.
    Soler, D.
    D'Eramo, E.
    Roth, A.
    Arrazola, P. J.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (01) : 49 - 52
  • [43] Modelling of back tempering in laser hardening
    Luca Giorleo
    Barbara Previtali
    Quirico Semeraro
    The International Journal of Advanced Manufacturing Technology, 2011, 54 : 969 - 977
  • [44] Modelling of back tempering in laser hardening
    Giorleo, Luca
    Previtali, Barbara
    Semeraro, Quirico
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 54 (9-12): : 969 - 977
  • [45] Fracture surface microstructure and new fracture mechanism in the pearlite structure
    Zhai, Kai
    Zhang, Yujing
    Yue, Jialong
    Qiu, Yong
    Zhou, Xinru
    Zhao, Ke
    Yu, Xiaomei
    Zheng, Jinyou
    Li, Songjie
    Ping, Dehai
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 31 : 1885 - 1895
  • [46] Laser surface hardening of gear
    Zhang, Hong
    Shi, Yan
    Zhang, Dongyun
    Xu, Chunying
    Yingyong Jiguang/Applied Laser Technology, 2000, 20 (02): : 64 - 66
  • [47] Laser surface hardening: a review
    Babu, P. Dinesh
    Balasubramanian, K. R.
    Buvanashekaran, G.
    INTERNATIONAL JOURNAL OF SURFACE SCIENCE AND ENGINEERING, 2011, 5 (2-3) : 131 - 151
  • [48] Laser alloying and surface hardening
    Belyi, A.
    Gordienko, A.
    Kheifetz, M.
    Koukhta, S.
    Annals of DAAAM for 2006 & Proceedings of the 17th International DAAAM Symposium: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON MECHATRONICS AND ROBOTICS, 2006, : 33 - 34
  • [49] Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening
    Miokovic, T.
    Schulze, V.
    Voehringer, O.
    Loehe, D.
    ACTA MATERIALIA, 2007, 55 (02) : 589 - 599
  • [50] The microstructure and corrosion behavior of Cr-containing ferrite-pearlite steels in an acidic environment
    Hao, Xuehui
    Wang, Changzheng
    Guo, Shuai
    Ma, Jie
    Chen, Hui
    Zhao, Xingchuan
    ANTI-CORROSION METHODS AND MATERIALS, 2023, : 218 - 226