On the Running Time of Hypergraph Bootstrap Percolation

被引:2
|
作者
Noel, Jonathan A. [1 ]
Ranganathan, Arjun [2 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[2] Indian Inst Sci Educ & Res IISER Pune, Dept Math, Pune, India
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
METASTABILITY THRESHOLD; SHARP THRESHOLD; SATURATION; BOUNDS;
D O I
10.37236/11307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given r 2 and an r-uniform hypergraph F, the F-bootstrap process starts with an r-uniform hypergraph H and, in each time step, every hyperedge which "completes" a copy of F is added to H. The maximum running time of this pro-cess has been recently studied in the case that r = 2 and F is a complete graph by Bollob & PRIME;as, Przykucki, Riordan and Sahasrabudhe [Electron. J. Combin. 24(2) (2017), Paper No. 2.16], Matzke [arXiv:1510.06156v2] and Balogh, Kronenberg, Pokrovskiy and Szab & PRIME;o [arXiv:1907.04559v1]. We consider the case that r 3 and F is the complete r-uniform hypergraph on k vertices. Our main results are that the maximum running time is & UTheta; (nr) if k r + 2 and & OHM; ������nr-1 ������ if k = r + 1. For the case k = r + 1, we conjecture that our lower bound is optimal up to a constant factor when r = 3, but suspect that it can be improved by more than a constant factor for large r.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] THE MAXIMAL RUNNING TIME OF HYPERGRAPH BOOTSTRAP PERCOLATION
    Hartarsky, Ivailo
    Lichev, Lyuben
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1462 - 1471
  • [2] Long running times for hypergraph bootstrap percolation
    Diaz, Alberto Espuny
    Janzer, Barnabas
    Kronenberg, Gal
    Lada, Joanna
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 115
  • [3] On the maximum running time in graph bootstrap percolation
    Bollobas, Bela
    Przykucki, Michal
    Riordan, Oliver
    Sahasrabudhe, Julian
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [4] A sharp threshold for bootstrap percolation in a random hypergraph
    Morrison, Natasha
    Noel, Jonathan A.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [5] The Time of Graph Bootstrap Percolation
    Gunderson, Karen
    Koch, Sebastian
    Przykucki, Michal
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (01) : 143 - 168
  • [6] The time of bootstrap percolation in two dimensions
    Paul Balister
    Béla Bollobás
    Paul Smith
    [J]. Probability Theory and Related Fields, 2016, 166 : 321 - 364
  • [7] The time of bootstrap percolation in two dimensions
    Balister, Paul
    Bollobas, Bela
    Smith, Paul
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 321 - 364
  • [8] MAXIMUM PERCOLATION TIME IN TWO-DIMENSIONAL BOOTSTRAP PERCOLATION
    Benevides, Fabricio
    Przykucki, Michal
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 224 - 251
  • [9] THE TIME OF BOOTSTRAP PERCOLATION WITH DENSE INITIAL SETS
    Bollobas, Bela
    Holmgren, Cecilia
    Smith, Paul
    Uzzell, Andrew J.
    [J]. ANNALS OF PROBABILITY, 2014, 42 (04): : 1337 - 1373
  • [10] DIFFUSION PERCOLATION .1. INFINITE TIME LIMIT AND BOOTSTRAP PERCOLATION
    ADLER, J
    AHARONY, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (06): : 1387 - 1404