Long running times for hypergraph bootstrap percolation

被引:1
|
作者
Diaz, Alberto Espuny [1 ]
Janzer, Barnabas [2 ]
Kronenberg, Gal [3 ]
Lada, Joanna [4 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[2] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[3] Univ Oxford, Math Inst, Radcliffe Observatory Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford, England
[4] London Sch Econ & Polit Sci, Houghton St, London WC2A 2AE, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.ejc.2023.103783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the hypergraph bootstrap percolation process in which, given a fixed r-uniform hypergraph H and starting with a given hypergraph G 0 , at each step we add to G 0 all edges that create a new copy of H . We are interested in maximising the number of steps that this process takes before it stabilises. For the case where H = K (r) r + 1 with r >= 3, we provide a new construction for G 0 that shows that the number of steps of this process can be of order 9 (n r). This answers a recent question of Noel and Ranganathan. To demonstrate that different running times can occur, we also prove that, if H is K (3) 4 minus an edge, then the maximum possible running time is 2n n - (sic)log 2 (n - 2)(sic) - 6. However, if H is K (3) 5 minus an edge, then the process can run for 9 (n 3) steps. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On the Running Time of Hypergraph Bootstrap Percolation
    Noel, Jonathan A.
    Ranganathan, Arjun
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [2] THE MAXIMAL RUNNING TIME OF HYPERGRAPH BOOTSTRAP PERCOLATION
    Hartarsky, Ivailo
    Lichev, Lyuben
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1462 - 1471
  • [3] A sharp threshold for bootstrap percolation in a random hypergraph
    Morrison, Natasha
    Noel, Jonathan A.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [4] On the maximum running time in graph bootstrap percolation
    Bollobas, Bela
    Przykucki, Michal
    Riordan, Oliver
    Sahasrabudhe, Julian
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [5] BOOTSTRAP PERCOLATION
    ADLER, J
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 171 (03) : 453 - 470
  • [6] Critical percolation on the kagome hypergraph
    Scullard, Christian R.
    Jacobsen, Jesper Lykke
    Ziff, Robert M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (05)
  • [7] Bootstrap percolation on the hypercube
    Balogh, J
    Bollobás, B
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (04) : 624 - 648
  • [8] Bootstrap percolation with inhibition
    Einarsson, Hafsteinn
    Lengler, Johannes
    Mousset, Frank
    Panagiotou, Konstantinos
    Steger, Angelika
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 881 - 925
  • [9] Selective bootstrap percolation
    Sellitto, Mauro
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (11):
  • [10] Bootstrap percolation on the hypercube
    József Balogh
    Béla Bollobás
    [J]. Probability Theory and Related Fields, 2006, 134 : 624 - 648