Lattices in real quadratic fields and associated theta series arising from codes over F4 and F2 x F2

被引:0
|
作者
Betti, Livia [1 ]
Brown, Jim [2 ]
Gaitan, Fernando [3 ]
Spear, Aiyana [4 ]
Varlack, Japheth [5 ]
机构
[1] Univ Rochester, Dept Math, 140 Trustee Rd, Rochester, NY 14627 USA
[2] Occidental Coll, Dept Math, 1600 Campus Rd, Los Angeles, CA 90042 USA
[3] Wesleyan Univ, Dept Math & Comp Sci, 45 Wyllys Ave, Middletown, CT 06459 USA
[4] Wellesley Coll, Math Dept, 106 Cent St, Wellesley, MA 02481 USA
[5] Lee Univ, Dept Math Sci, 1120 N Ocoee St, Cleveland, TN 37311 USA
关键词
Coding theory; Lattices; Real quadratic fields; Theta series; HERMITIAN LATTICES;
D O I
10.1007/s10623-023-01258-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let K = Q(root d) with d > 0 square-free and let O-K denote the ring of integers of K. Let C subset of R-n be a linear code whereRis F-4 if d = 5 (mod 8) and F-2 x F-2 if d = 1 (mod 8). One has a surjective ring homomorphism rho : O-K(n) -> R-n given by reductionmodulo (2O(K))(n). The inverse image Lambda(C) := rho(-1) (C) is a lattice associated to the code C. One can associate to Lambda C a theta series Theta Lambda(d) (C). In this paper we consider howthe theta series varies as one varies the value d. In particular, we show that for d, d ' with d > d ', one has Theta(Lambda d) (C) = Theta Lambda(d ') (C)+ O ( q d '+1\2).
引用
收藏
页码:3305 / 3319
页数:15
相关论文
共 50 条
  • [31] DIFFERENTIAL NEPHELAUXETIC REDUCTION OF F2 AND F4 SLATER-CONDON INTEGRALS
    RANSON, GSS
    WARREN, KD
    CHEMICAL PHYSICS LETTERS, 1971, 10 (02) : 236 - &
  • [32] On cyclic DNA codes over F2 + uF2
    Liang J.
    Wang L.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 81 - 91
  • [33] Decoding of cyclic codes over F2 + uF2
    RMIT Univ, Melbourne, Australia
    IEEE Trans. Inf. Theory, 6 (2148-2157):
  • [34] GOTTFRIED SUM FROM THE RATIO F2(N)/F2(P)
    AMAUDRUZ, P
    ARNEODO, M
    ARVIDSON, A
    BADELEK, B
    BAUM, G
    BEAUFAYS, J
    BIRD, IG
    BOTJE, M
    BROGGINI, C
    BRUCKNER, W
    BRULL, A
    BURGER, WJ
    CIBOROWSKI, J
    CRITTENDEN, R
    VANDANTZIG, R
    DOBBELING, H
    DOMINGO, J
    DRINKARD, J
    DZIERBA, A
    ENGELIEN, H
    FERRERO, MI
    FLURI, L
    GRAFSTROM, P
    VONHARRACH, D
    VANDERHEIJDEN, M
    HEUSCH, C
    INGRAM, Q
    JACHOLKOWSKA, A
    JANSON, K
    DEJONG, M
    KABUSS, EM
    KAISER, R
    KETEL, TJ
    KLEIN, F
    KORZEN, B
    KRUNER, U
    KULLANDER, S
    LANDGRAF, U
    LETTENSTROM, T
    LINDQVIST, T
    MALLOT, GK
    MARIOTTI, C
    VANMIDDELKOOP, G
    MIZUNO, Y
    NASSALSKI, J
    NOWOTNY, D
    PAVEL, N
    PESCHEL, H
    PERONI, C
    POVH, B
    PHYSICAL REVIEW LETTERS, 1991, 66 (21) : 2712 - 2715
  • [35] The distance to a squarefree polynomial over F2[x]
    Filaseta, Michael
    Moy, Richard A.
    ACTA ARITHMETICA, 2020, 193 (04) : 419 - 427
  • [36] AN OUTLINE OF THE THEORY OF F2 SERIES
    VERBLUNSKY, S
    AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (03) : 628 - 654
  • [37] Constacyclic and cyclic codes over F2 + uF2 + u2F2
    Qian, Jian-Fa
    Zhang, Li-Na
    Zhu, Shi-Xin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (06) : 1863 - 1865
  • [38] BEHAVIOR OF F2(N)(X)-F2(P)(X) NEAR X = 1 AND CHIRAL ALGEBRA
    BUCCELLA, F
    FALCIONI, M
    PUGLIESE, A
    LETTERE AL NUOVO CIMENTO, 1976, 17 (15): : 489 - 494
  • [39] On Mersenne polynomials over F2
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 : 284 - 296
  • [40] Polynomial factorization over F2
    Von zur Gathen, J
    Gerhard, J
    MATHEMATICS OF COMPUTATION, 2002, 71 (240) : 1677 - 1698