Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models

被引:6
|
作者
Gomez, Jose L. [1 ,2 ]
Villalonga, Gabriel [1 ]
Lopez, Antonio M. [1 ,2 ]
机构
[1] Univ Autonoma Barcelona UAB, Comp Vis Ctr CVC, Bellaterra 08193, Spain
[2] Univ Autonoma Barcelona UAB, Comp Sci Dept, Bellaterra 08193, Spain
关键词
domain adaptation; semi-supervised learning; semantic segmentation; autonomous driving;
D O I
10.3390/s23020621
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Semantic image segmentation is a core task for autonomous driving, which is performed by deep models. Since training these models draws to a curse of human-based image labeling, the use of synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies addressing an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic segmentation models. It performs iterations where the (unlabeled) real-world training images are labeled by intermediate deep models trained with both the (labeled) synthetic images and the real-world ones labeled in previous iterations. More specifically, a self-training stage provides two domain-adapted models and a model collaboration loop allows the mutual improvement of these two models. The final semantic segmentation labels (pseudo-labels) for the real-world images are provided by these two models. The overall procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for onboard semantic segmentation. Our procedure shows improvements ranging from approximately 13 to 31 mIoU points over baselines.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation with Implicit Pseudo Supervision for Semantic Segmentation
    Xu, Wanyu
    Wang, Zengmao
    Bian, Wei
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [22] Bilateral Knowledge Distillation for Unsupervised Domain Adaptation of Semantic Segmentation
    Wang, Yunnan
    Li, Jianxun
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10177 - 10184
  • [23] Target-targeted Domain Adaptation for Unsupervised Semantic Segmentation
    Zhang, Xiaohong
    Zhang, Haofeng
    Lu, Jianfeng
    Shao, Ling
    Yang, Jingyu
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13560 - 13566
  • [24] VARIATIONAL AUTOENCODER BASED UNSUPERVISED DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2426 - 2430
  • [25] Unsupervised Domain Adaptation for Semantic Segmentation with Global and Local Consistency
    Shan, Xiangxuan
    Yin, Zijin
    Gao, Jiayi
    Liang, Kongming
    Ma, Zhanyu
    Guo, Jun
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 154 - 165
  • [26] Latent Space Regularization for Unsupervised Domain Adaptation in Semantic Segmentation
    Barbato, Francesco
    Toldo, Marco
    Michieli, Umberto
    Zanuttigh, Pietro
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2829 - 2839
  • [27] Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution
    Wu, Quanliang
    Liu, Huajun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [28] Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation
    Chen, Tao
    Wang, Shui-Hua
    Wang, Qiong
    Zhang, Zheng
    Xie, Guo-Sen
    Tang, Zhenmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1042 - 1054
  • [29] Unsupervised Domain Adaptation for Remote Sensing Semantic Segmentation with Transformer
    Li, Weitao
    Gao, Hui
    Su, Yi
    Momanyi, Biffon Manyura
    REMOTE SENSING, 2022, 14 (19)
  • [30] Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-training
    Zou, Yang
    Yu, Zhiding
    Kumar, B. V. K. Vijaya
    Wang, Jinsong
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 297 - 313