Feasibility study of wire arc additive manufactured P91 steel by cold metal transfer deposition

被引:0
|
作者
Sharos, H. [1 ]
Jerome, S. [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, Trichy 620015, Tamil Nadu, India
来源
关键词
Wire arc additive manufacturing; Welding; P91; Characterization; Microstructure; CMT; HEAT-TREATMENT; MICROSTRUCTURE; EVOLUTION; STABILITY; BEHAVIOR; PHASES;
D O I
10.1016/j.mtcomm.2024.108039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of this study was to analyze and evaluate the feasibility of utilizing Wire Arc Additive Manufacturing (WAAM) technology for the constructing components made from P91 steel, which is widely used material for high-temperature applications. The utilization of the Cold Metal Transfer (CMT) method enables the deposition of thin steel walls by virtue of its low heat input. Samples collected from the deposited wall have been tested in two different microstructural conditions, in the as-built (AB) condition and in a normalized and tempered (NT) condition. The latter condition is the microstructural state commonly employed for producing components used in power plants. This post-deposition heat treatments (PDHT) comprise a normalization process conducted at 1050 C-degrees for 40 min, followed by a tempering step at 760 C-degrees for 2 h. The results of mechanical testing and microstructural characterization were then compared against the established standards for commercial P91 steel. SEM-EDAX, XRD, and EBSD analyses were employed to conduct a comprehensive microstructural examination of the samples. The hardness of the AB samples ranged from 384 to 439 HV, while the NT samples had a hardness range of 205 to 223 HV. In terms of tensile strength, the AB samples demonstrated a range of 1064 to 1266 MPa, whereas the NT samples exhibited a range of 635 to 626 MPa. These results were found to be consistent with the observed strong texture and grain orientations in the {001} and {111} planes, as revealed by the EBSD analysis. The NT components demonstrated significant strength, ductility, hardness, and toughness compared to the specified ASTM standards. Based on the test performance and feasibility criteria, this process has significant potential as an additive manufacturing method suitable for complex boiler components.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] A review on wire arc additive manufacturing based on cold metal transfer
    Meena, Rajendra Prasad
    Yuvaraj, N.
    Vipin
    MATERIALS AND MANUFACTURING PROCESSES, 2024, 39 (10) : 1315 - 1341
  • [12] Cold metal transfer-based wire arc additive manufacturing
    Bunty Tomar
    S. Shiva
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [13] Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes
    Nagasai, B. Prasanna
    Malarvizhi, S.
    Balasubramanian, V.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 307
  • [14] Mechanical properties of wire arc additive manufactured carbon steel cylindrical component made by cold metal transferred arc welding process
    Bellamkonda, Prasanna Nagasai
    Sudersanan, Malarvizhi
    Visvalingam, Balasubramanian
    MATERIALS TESTING, 2022, 64 (02) : 260 - 271
  • [15] Wire and arc additive manufactured steel: Tensile and wear properties
    Haden, C., V
    Zeng, G.
    Carter, F. M., III
    Ruhl, C.
    Krick, B. A.
    Harlow, D. G.
    ADDITIVE MANUFACTURING, 2017, 16 : 115 - 123
  • [16] Microstructure and Properties of 304 Stainless Steel Specimen Manufactured by Cold Metal Transfer plus Pulse Composite Arc Additive
    Wang, Yanjie
    Hou, Xuru
    Zhao, Lin
    Peng, Yun
    Ma, Chengyong
    Li, Hongbo
    SCIENCE OF ADVANCED MATERIALS, 2021, 13 (01) : 152 - 160
  • [17] Study on Properties and Microstructure of Wire Arc Additive Manufactured 2209 Duplex Stainless Steel
    Nagasai, Bellamkonda Prasanna
    Dwivedy, Maheshwar
    Malarvizhi, Sudersanan
    Balasubramanian, Visvalingam
    Ramaswamy, Addanki
    Snehalatha, Pulivarthi
    Vegesna, Nagavalli
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (03) : 519 - 531
  • [18] Study on the softening mechanism of P91 steel
    Zhang, Xuehua
    Zeng, Yanping
    Cai, Wenhe
    Wang, Zhichun
    Li, Weili
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 728 : 63 - 71
  • [19] Experiments and numerical simulation of wire and arc additive manufactured steel materials
    Xin, Haohui
    Tarus, Iulia
    Cheng, Lu
    Veljkovic, Milan
    Persem, Nicolas
    Lorich, Laurent
    STRUCTURES, 2021, 34 : 1393 - 1402
  • [20] Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System
    Chen X.
    Su C.
    Wang Y.
    Siddiquee A.N.
    Konovalov S.
    Jayalakshmi S.
    Singh R.A.
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2018, 12 (6) : 1278 - 1284