Identification of pyroptosis-associated genes with diagnostic value in calcific aortic valve disease

被引:3
|
作者
Yu, Chenxi [1 ]
Zhang, Yifeng [1 ]
Yang, Ling [2 ]
Aikebaier, Mirenuer [1 ]
Shan, Shuyao [1 ]
Zha, Qing [2 ]
Yang, Ke [1 ]
机构
[1] Shanghai Jiaotong Univ Sch Med, Ruijin Hosp, Dept Cardiovasc Med, Dept Neurol, Shanghai, Peoples R China
[2] Shanghai Jiaotong Univ Sch Med, Shanghai Peoples Hosp 9, Dept Cardiol, Shanghai, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
calcific aortic valve disease; pyroptosis; machine learning; immune infiltration; GEO; PLACENTAL GROWTH-FACTOR; INTERSTITIAL-CELLS; PHENOTYPIC SWITCH; MYELOID CELLS-1; OSTEOPROTEGERIN; STENOSIS; RISK; MECHANISMS; INHIBITION; RELEVANCE;
D O I
10.3389/fcvm.2024.1340199
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Calcific aortic valve disease (CAVD) is one of the most prevalent valvular diseases and is the second most common cause for cardiac surgery. However, the mechanism of CAVD remains unclear. This study aimed to investigate the role of pyroptosis-related genes in CAVD by performing comprehensive bioinformatics analysis. Methods Three microarray datasets (GSE51472, GSE12644 and GSE83453) and one RNA sequencing dataset (GSE153555) were obtained from the Gene Expression Omnibus (GEO) database. Pyroptosis-related differentially expressed genes (DEGs) were identified between the calcified and the normal valve samples. LASSO regression and random forest (RF) machine learning analyses were performed to identify pyroptosis-related DEGs with diagnostic value. A diagnostic model was constructed with the diagnostic candidate pyroptosis-related DEGs. Receiver operating characteristic (ROC) curve analysis was performed to estimate the diagnostic performances of the diagnostic model and the individual diagnostic candidate genes in the training and validation cohorts. CIBERSORT analysis was performed to estimate the differences in the infiltration of the immune cell types. Pearson correlation analysis was used to investigate associations between the diagnostic biomarkers and the immune cell types. Immunohistochemistry was used to validate protein concentration. Results We identified 805 DEGs, including 319 down-regulated genes and 486 up-regulated genes. These DEGs were mainly enriched in pathways related to the inflammatory responses. Subsequently, we identified 17 pyroptosis-related DEGs by comparing the 805 DEGs with the 223 pyroptosis-related genes. LASSO regression and RF algorithm analyses identified three CAVD diagnostic candidate genes (TREM1, TNFRSF11B, and PGF), which were significantly upregulated in the CAVD tissue samples. A diagnostic model was constructed with these 3 diagnostic candidate genes. The diagnostic model and the 3 diagnostic candidate genes showed good diagnostic performances with AUC values >0.75 in both the training and the validation cohorts based on the ROC curve analyses. CIBERSORT analyses demonstrated positive correlation between the proportion of M0 macrophages in the valve tissues and the expression levels of TREM1, TNFRSF11B, and PGF. Conclusion Three pyroptosis-related genes (TREM1, TNFRSF11B and PGF) were identified as diagnostic biomarkers for CAVD. These pyroptosis genes and the pro-inflammatory microenvironment in the calcified valve tissues are potential therapeutic targets for alleviating CAVD.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Calcific Aortic Valve Disease: New Concepts
    Otto, Catherine M.
    SEMINARS IN THORACIC AND CARDIOVASCULAR SURGERY, 2010, 22 (04) : 276 - 284
  • [32] Health Behaviors and Calcific Aortic Valve Disease
    Lamprea-Montealegre, Julio A.
    Otto, Catherine M.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (03):
  • [33] Animal Models of Calcific Aortic Valve Disease
    Sider, Krista L.
    Blaser, Mark C.
    Simmons, Craig A.
    INTERNATIONAL JOURNAL OF INFLAMMATION, 2011, 2011
  • [34] Epidemiology and genetics of calcific aortic valve disease
    O'Brien, Kevin D.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2007, 55 (06) : 284 - 291
  • [35] Molecular imaging of calcific aortic valve disease
    Jung, Jae-Joon
    Jadbabaie, Farid
    Sadeghi, Mehran M.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2018, 25 (04) : 1148 - 1155
  • [36] Plasma homocysteine and calcific aortic valve disease
    Novaro, GM
    Aronow, HD
    Mayer-Sabik, E
    Griffin, BP
    HEART, 2004, 90 (07) : 802 - 803
  • [37] Molecular imaging of calcific aortic valve disease
    Jae-Joon Jung
    Farid Jadbabaie
    Mehran M. Sadeghi
    Journal of Nuclear Cardiology, 2018, 25 : 1148 - 1155
  • [38] Basic Mechanisms of Calcific Aortic Valve Disease
    Mathieu, Patrick
    Boulanger, Marie-Chloe
    CANADIAN JOURNAL OF CARDIOLOGY, 2014, 30 (09) : 982 - 993
  • [39] Calcific Aortic Valve Disease A Battle of the Sexes
    Porras, Ana M.
    McCoy, Chloe M.
    Masters, Kristyn S.
    CIRCULATION RESEARCH, 2017, 120 (04) : 604 - 606
  • [40] Immune Cells in Calcific Aortic Valve Disease
    Bartoli-leonard, Francesca
    Aikawa, Elena
    CIRCULATION, 2021, 144