Surface-confined two-dimensional mass transport and crystal growth on monolayer materials

被引:3
|
作者
Jia, Yanyu [1 ]
Yuan, Fang [2 ]
Cheng, Guangming [3 ]
Tang, Yue [1 ]
Yu, Guo [1 ,4 ]
Song, Tiancheng [1 ]
Wang, Pengjie [1 ]
Singha, Ratnadwip [2 ]
Uzan-Narovlansky, Ayelet J. [1 ]
Onyszczak, Michael [1 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [6 ]
Yao, Nan [3 ]
Schoop, Leslie M. [2 ]
Wu, Sanfeng [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Princeton Mat Inst, Princeton, NJ USA
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ USA
[5] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba, Japan
[6] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba, Japan
来源
NATURE SYNTHESIS | 2024年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
WATER;
D O I
10.1038/s44160-023-00442-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conventional vapour deposition or epitaxial growth of two-dimensional (2D) materials and heterostructures is conducted in a large chamber in which masses transport from the source to the substrate. Here we report a chamber-free, on-chip approach for growing 2D crystalline structures directly in a nanoscale surface-confined 2D space. The method is based on the surprising discovery of the rapid, long-distance, non-Fickian transport of a uniform layer of atomically thin palladium on a monolayer crystal of tungsten ditelluride at temperatures well below the known melting points of all the materials involved. The nanoconfined growth realizes the controlled formation of a stable 2D crystalline material, Pd7WTe2, when the monolayer seed is either free-standing or fully encapsulated in a van der Waals stack. The approach is generalizable and compatible with nanodevice fabrication, promising to greatly expand the library of 2D materials and their functionalities. The unexpected phenomenon of rapid, long-distance transport of an ultrathin and uniform metal film on two-dimensional crystals is reported at temperatures well below the melting points of all of the materials involved. The effect is generalizable and may offer possibilities in confined space chemistry, as well as in two-dimensional crystal growth and devices.
引用
收藏
页码:386 / 393
页数:11
相关论文
共 50 条
  • [31] Dynamics of Exciton Transport in Two-Dimensional Materials
    Xia Yuexing
    Zhang Shuai
    Wu Keming
    Gong Yiyang
    Yue Shuai
    Liu Xinfeng
    中国激光, 2023, 50 (01) : 132 - 143
  • [32] Crystal phase control in two-dimensional materials
    Jialiang Wang
    Yang Wei
    Hai Li
    Xiao Huang
    Hua Zhang
    Science China Chemistry, 2018, 61 : 1227 - 1242
  • [33] Crystal phase control in two-dimensional materials
    Wang, Jialiang
    Wei, Yang
    Li, Hai
    Huang, Xiao
    Zhang, Hua
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (10) : 1227 - 1242
  • [34] Crystal phase control in two-dimensional materials
    Jialiang Wang
    Yang Wei
    Hai Li
    Xiao Huang
    Hua Zhang
    Science China(Chemistry), 2018, (10) : 1227 - 1242
  • [35] TWO-DIMENSIONAL MASS-TRANSPORT IN ESTUARIES
    LUNG, WS
    OCONNOR, DJ
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1984, 110 (10): : 1340 - 1357
  • [36] Crystal phase control in two-dimensional materials
    Jialiang Wang
    Yang Wei
    Hai Li
    Xiao Huang
    Hua Zhang
    Science China(Chemistry), 2018, 61 (10) : 1227 - 1242
  • [37] Mass transport in two-dimensional water waves
    Iskandarani, Mohamed
    Liu, Philip L.-F.
    Journal of Fluid Mechanics, 1991, 231 : 395 - 415
  • [38] ISOTHERMS AND ISOBARS FOR THE CRYSTAL LIQUID TRANSITION IN A TWO-DIMENSIONAL MONOLAYER
    AVILOV, VV
    NIKOMAROV, ES
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1984, 87 (02): : 570 - 580
  • [39] TWO-DIMENSIONAL, TRANSIENT MODEL FOR MASS-TRANSPORT IN LASER SURFACE ALLOYING
    CHANDE, T
    MAZUMDER, J
    JOURNAL OF APPLIED PHYSICS, 1985, 57 (06) : 2226 - 2232
  • [40] Ultrahigh Lithium Selective Transport in Two-Dimensional Confined Ice
    Han, Dong
    Jin, Xiaorui
    Li, YuHao
    He, Weijun
    Ai, Xinyu
    Yang, Yongan
    Zhang, Ning
    Zhao, Min
    Zhou, Kai-Ge
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (09): : 2375 - 2383