Improved interface microstructure between crystalline silicon and nanocrystalline silicon oxide window layer of silicon heterojunction solar cells

被引:7
|
作者
Zhou, Yinuo [1 ,2 ]
Zhang, Liping [1 ,2 ]
Liu, Wenzhu [1 ,2 ]
Zhang, Honghua [1 ,2 ]
Huang, Shenglei [1 ,2 ,3 ]
Lan, Shihu [4 ]
Zhao, Hui [4 ]
Fu, Haoxin [4 ]
Han, Anjun [1 ]
Li, Zhenfei [1 ,2 ]
Jiang, Kai [1 ,2 ]
Yu, Xiangrui [5 ]
Zhao, Dongming [5 ]
Li, Rui [6 ]
Meng, Fanying [1 ,2 ]
Liu, Zhengxin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol SIMIT, Res Ctr New Energy Technol RCNET, Natl Key Lab Mat Integrated Circuits, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Tongwei Solar Chengdu Co Ltd, Chengdu 610200, Peoples R China
[5] Huaneng Clean Energy Res Inst, Beijing 102209, Peoples R China
[6] Huaneng Gansu Energy Dev Co Ltd, Lanzhou 730070, Gansu, Peoples R China
关键词
Microstructure of silicon films; Silicon heterojunction solar cells; Intrinsic hydrogenated amorphous silicon; Nanocrystalline silicon oxide; Ions bombardment; Surface passivation; CHEMICAL-VAPOR-DEPOSITION; H THIN-FILMS; MICROCRYSTALLINE SILICON; STRUCTURAL-CHANGES; HIGH-EFFICIENCY; HYDROGEN; PASSIVATION; MECHANISM; STRESS; GROWTH;
D O I
10.1016/j.solmat.2023.112652
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
N-type hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) is potential to enhance the performance of silicon heterojunction solar cells, but the raised plasma damage on underlying layer during the nc-SiOx:H deposition with a high-volume fraction of hydrogen is a burning issue. The underlying intrinsic hydrogenated amorphous silicon (i-a-Si:H) bilayer between n-type crystalline silicon (c-Si) and n-type nc-SiOx:H has been investigated by modulating silane (SiH4) gas flow rate (GFR) of interface porous layer. It has been found that the initial H-rich ia-Si:H bilayer deposited by interfacial 1600 sccm GFR with relatively stable larger voids diameter and less voids number density can not only withstand hydrogen ions bombardment but also passivate c-Si surface well. Meanwhile, it also has been verified that the optimal n-seed deposition can further enhance both total hydrogen content and hydrogen content in compact structure to promote c-Si surface passivation and carrier transportation. The optimized SiH4 GFR for the interfacial i-a-Si:H growth and the appropriate deposition time of nseed layer have been applied into the front passivation layer of silicon heterojunction solar cells, thus a high efficiency of approximate 25 % with high VOC and FF has been achieved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optimized Nanocrystalline Silicon Oxide Emitter and Back Surface Field for Silicon Heterojunction Solar Cells
    Jiang, Yuanjian
    Zhang, Xiaodan
    Zhao, Ying
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2018, 7 (10) : P524 - P528
  • [22] Silicon heterojunction solar cells with nanocrystalline Silicon Oxide emitter: Insights into charge carrier transport
    Kirner, Simon
    Mazzarella, Luana
    Korte, Lars
    Stannowski, Bernd
    Rech, Bernd
    Schlatmann, Rutger
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [23] Enhanced passivation at amorphous/crystalline silicon interface and suppressed Schottky barrier by deposition of microcrystalline silicon emitter layer in silicon heterojunction solar cells
    Ghahfarokhi, Omid Madani
    von Maydell, Karsten
    Agert, Carsten
    APPLIED PHYSICS LETTERS, 2014, 104 (11)
  • [24] Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
    Seif, Johannes Peter
    Descoeudres, Antoine
    Filipic, Miha
    Smole, Franc
    Topic, Marko
    Holman, Zachary Charles
    De Wolf, Stefaan
    Ballif, Christophe
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (02)
  • [25] High-quality nanocrystalline cubic silicon carbide emitter for crystalline silicon heterojunction solar cells
    Miyajima, Shinsuke
    Irikawa, Junpei
    Yamada, Akira
    Konagai, Makoto
    APPLIED PHYSICS LETTERS, 2010, 97 (02)
  • [26] Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells
    Seif, Johannes P.
    Descoeudres, Antoine
    Nogay, Gizem
    Hanni, Simon
    de Nicolas, Silvia Martin
    Holm, Niels
    Geissbuhler, Jonas
    Hessler-Wyser, Aicha
    Duchamp, Martial
    Dunin-Borkowski, Rafal E.
    Ledinsky, Martin
    De Wolf, Stefaan
    Ballif, Christophe
    IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (05): : 1132 - 1140
  • [27] Development of the Transparent Conductive Oxide Layer for Nanocrystalline Cubic Silicon Carbide/Silicon Heterojunction Solar Cells with Aluminum Oxide Passivation Layers
    Irikawa, Junpei
    Miyajima, Shinsuke
    Watahiki, Tatsuro
    Konagai, Makoto
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (02)
  • [28] Band gap optimization of the window layer in silicon heterojunction solar cells
    Zhong, C. L.
    Luo, L. E.
    Tan, H. S.
    Geng, K. W.
    SOLAR ENERGY, 2014, 108 : 570 - 575
  • [29] Optimization of the window layer in large area silicon heterojunction solar cells
    Zhang, Yue
    Yu, Cao
    Yang, Miao
    He, Yongcai
    Zhang, Linrui
    Zhang, Jinyan
    Xu, Xixiang
    Zhang, Yongzhe
    Song, Xuemei
    Yan, Hui
    RSC ADVANCES, 2017, 7 (15): : 9258 - 9263
  • [30] Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters
    Gatz, Henriette A.
    Rath, Jatin K.
    Verheijen, Marcel A.
    Kessels, Wilhelmus M. M.
    Schropp, Ruud E. I.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (07): : 1932 - 1936