Kinetic Energy Budget in Turbulent Flows of Dilute Polymer Solutions

被引:0
|
作者
Serafini, Francesco [1 ]
Battista, Francesco [1 ]
Gualtieri, Paolo [1 ]
Casciola, Carlo Massimo [1 ]
机构
[1] Sapienza Univ Rome, Dept Mech & Aerosp Engn, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Turbulence; Pipe flow; Polymer-laden flows; DIRECT NUMERICAL-SIMULATION; DRAG REDUCTION; CHANNEL FLOW;
D O I
10.1007/s10494-023-00460-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
Direct numerical simulation of a turbulent pipe flow of a realistic solution of 10(8) polymers, modelled as finitely extensible nonlinear elastic (FENE) dumbbells, and directly momen-tum coupled with the incompressible Navier-Stokes equations, are performed by means of an Eulerian-Lagrangian approach. Besides the drag reduction, the polymers significantly modify mean and turbulent kinetic energy budgets. The polymer backreaction to the sol-vent reduces the Reynolds stress and thus decreases the turbulent production and, at large Weissenberg number, the polymers act as a source of turbulent kinetic energy for y(+) > 40, leading to an increase in the dissipation. This effect is peculiar to large Weissenberg poly-mers and it is particularly apparent at a small Reynolds number. At a smaller Weissenberg number, the effect of the polymers remains confined in the buffer layer, with the kinetic energy budget not significantly altered elsewhere.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条