Porous 3D Printable Hydrogels

被引:6
|
作者
Baur, Eva [1 ]
Hirsch, Matteo [1 ]
Amstad, Esther [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, Soft Mat Lab, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
3D printing; hydrogels; porosity; diffusion; ANNIVERSARY; NETWORKS; POROSITY; SCAFFOLD; GELATIN; TOUGH;
D O I
10.1002/admt.202201763
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogels are interconnected, polymeric networks filled with water. Their inherent responsiveness to different stimuli, including the presence of salt, solvents, or, depending on their composition, changes in pH or temperature, renders them attractive for actuation and delivery purposes. Yet, the limited diffusivity within hydrogels hampers an efficient exchange of reagents such as active ingredients or solutes. The diffusivity can be increased if pores are incorporated into hydrogels. However, these pores typically weaken hydrogels, preventing their use for load-bearing applications. This work reports a method to controllably introduce open pores with diameters of 10 s of nanometers into hydrogels whose mechanical properties are still remarkable, with compression moduli above 100 kPa. Importantly, these hydrogels can be 3D printed, thereby opening up possibilities to tune the pore size within hydrogels from the 10 s of nm up to the cm size range. This work leverages the 3D printability of this material to locally vary the degree of porosity while maintaining mechanical properties that enable facile handling of the integral samples. Thereby, this work introduces new opportunities to size-selectively infiltrate different substances at well-defined locations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] 3D Printable Vapochromic Sensing Materials
    Stevens, David M.
    Gray, Bonnie L.
    Leznoff, Daniel B.
    Furukawa, Hidemitsu
    Khosla, Ajit
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (16)
  • [42] 3D Printable Antimicrobial Polymer Blend
    Daniels, Miche
    Rautenbach, Marina
    du Plessis, Anton
    Pfukwa, Rueben
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2024, 309 (08)
  • [43] Bioprinting of 3D hydrogels
    Stanton, M. M.
    Samitier, J.
    Sanchez, S.
    LAB ON A CHIP, 2015, 15 (15) : 3111 - 3115
  • [44] 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels
    Leppiniemi, Jenni
    Lahtinen, Panu
    Paajanen, Antti
    Mahlberg, Riitta
    Metsa-Kortelainen, Sini
    Pinornaa, Tatu
    Pajari, Heikki
    Vikholm-Lundin, Inger
    Pursula, Pekka
    Hytonen, Vesa P.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21959 - 21970
  • [45] Preparation of Microvasculature-embedding Porous Hydrogels for 3D Cell Culture
    Hori, Aruto
    Watabe, Yuki
    Yajima, Yuya
    Utoh, Rie
    Yamada, Masumi
    Seki, Minoru
    2018 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2018,
  • [46] Microgel dynamics within the 3D porous structure of transparent PEG hydrogels
    Laurati, Marco
    Bassu, Gavino
    Fratini, Emiliano
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2023, 221
  • [47] 3D Porous Biomimetically Modified Hydrogels Supporting Stem Cells Adhesion
    Studenovska, H.
    Vodicka, P.
    Kepkova, Vodickova K.
    Juhasova, J.
    Proks, V
    Motlik, J.
    Rypacek, F.
    24TH EUROPEAN CONFERENCE ON BIOMATERIALS, 2011, : 173 - 176
  • [48] 3D printable ionic conductive hydrogels with super stretch and self-adhesion performances for flexible sensors
    Xu, Xinqian
    Jiang, Pan
    Liu, Di
    Lyu, Yang
    Shi, Xinyan
    Ji, Zhongyin
    Wang, Xiaolong
    GIANT, 2024, 17
  • [49] 3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability
    Maiz-Fernandez, Sheila
    Barroso, Nagore
    Perez-Alvarez, Leyre
    Silvan, Unai
    Luis Vilas-Vilela, Jose
    Lanceros-Mendez, Senentxu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 188 : 820 - 832
  • [50] Mathematical approach to design 3D scaffolds for the 3D printable bone implant
    Wojnicz, Wiktoria
    Augustyniak, Marek
    Borzyszkowski, Piotr
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 667 - 678