Functional analysis of protein post-translational modifications using genetic codon expansion

被引:19
|
作者
Peng, Tao [1 ,2 ]
Das, Tandrila [3 ,4 ,5 ]
Ding, Ke [1 ]
Hang, Howard C. C. [3 ,4 ,5 ]
机构
[1] Peking Univ, Sch Chem Biol & Biotechnol, State Key Lab Chem Oncogen, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Shenzhen Bay Lab, Inst Chem Biol, Shenzhen, Peoples R China
[3] Scripps Res, Dept Immunol, La Jolla, CA 92037 USA
[4] Scripps Res, Dept Microbiol, La Jolla, CA 92037 USA
[5] Scripps Res, Dept Chem, La Jolla, CA 92037 USA
基金
中国国家自然科学基金;
关键词
bioorthogonal reaction; genetic codon expansion; post-translational modification; unnatural amino acids; SITE-SPECIFIC INCORPORATION; TYROSINE-SULFATED PROTEINS; CHEMICAL BIOLOGY; EPSILON-N; ESCHERICHIA-COLI; L-LYSINE; METABOLIC-REGULATION; METHYL-LYSINE; AMINO-ACIDS; ACETYLATION;
D O I
10.1002/pro.4618
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Post-translational modifications (PTMs) of proteins not only exponentially increase the diversity of proteoforms, but also contribute to dynamically modulating the localization, stability, activity, and interaction of proteins. Understanding the biological consequences and functions of specific PTMs has been challenging for many reasons, including the dynamic nature of many PTMs and the technical limitations to access homogenously modified proteins. The genetic code expansion technology has emerged to provide unique approaches for studying PTMs. Through site-specific incorporation of unnatural amino acids (UAAs) bearing PTMs or their mimics into proteins, genetic code expansion allows the generation of homogenous proteins with site-specific modifications and atomic resolution both in vitro and in vivo. With this technology, various PTMs and mimics have been precisely introduced into proteins. In this review, we summarize the UAAs and approaches that have been recently developed to site-specifically install PTMs and their mimics into proteins for functional studies of PTMs.
引用
收藏
页数:24
相关论文
共 50 条
  • [42] Pathological implication of protein post-translational modifications in cancer
    Pan, Sheng
    Chen, Ru
    MOLECULAR ASPECTS OF MEDICINE, 2022, 86
  • [43] Unusual post-translational protein modifications: the benefits of sophistication
    Ravikiran, Boddepalli
    Mahalakshmi, Radhakrishnan
    RSC ADVANCES, 2014, 4 (64) : 33958 - 33974
  • [44] The Role of Protein Post-Translational Modifications in Fruit Ripening
    Li, Ting
    Zeng, Jing
    Yang, Xinquan
    Garcia-Caparros, Pedro
    Duan, Xuewu
    HORTICULTURAE, 2024, 10 (10)
  • [45] Post-translational modifications in mitochondria: protein signaling in the powerhouse
    Stram, Amanda R.
    Payne, R. Mark
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2016, 73 (21) : 4063 - 4073
  • [46] Post-translational protein modifications in antigen recognition and autoimmunity
    Doyle, HA
    Mamula, MJ
    TRENDS IN IMMUNOLOGY, 2001, 22 (08) : 443 - 449
  • [47] Protein post-translational modifications in the regulation of cancer hallmarks
    Wang, Haiying
    Yang, Liqian
    Liu, Minghui
    Luo, Jianyuan
    CANCER GENE THERAPY, 2023, 30 (04) : 529 - 547
  • [48] The role of protein post-translational modifications in prostate cancer
    Hao, Yinghui
    Gu, Chenqiong
    Luo, Wenfeng
    Shen, Jian
    Xie, Fangmei
    Zhao, Ying
    Song, Xiaoyu
    Han, Zeping
    He, Jinhua
    PEERJ, 2024, 12
  • [49] In silico prediction and characterization of protein post-translational modifications
    Gianazza, Elisabetta
    Parravicini, Chiara
    Primi, Roberto
    Miller, Ingrid
    Eberini, Ivano
    JOURNAL OF PROTEOMICS, 2016, 134 : 65 - 75
  • [50] The characterization of protein post-translational modifications by mass spectrometry
    Schweppe, RE
    Haydon, CE
    Lewis, TS
    Resing, KA
    Ahn, NG
    ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (06) : 453 - 461