The data-driven research on the autogenous shrinkage of ultra-high performance concrete (UHPC) based on machine learning

被引:2
|
作者
Li, Yaqiang [1 ]
Shen, Jiale [2 ]
Li, Yue [2 ]
Wang, Kai [1 ]
Lin, Hui [2 ]
机构
[1] Beijing Forestry Univ, Coll Soil & Water Conservat, Dept Civil Engn, Beijing 100083, Peoples R China
[2] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Autogenous shrinkage; Machine learning; Prediction model; Feature analysis; FIBER-REINFORCED CONCRETE; DEFORMATION;
D O I
10.1016/j.jobe.2023.108373
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper performs the data-driven research on the autogenous shrinkage of Ultra-High Performance Concrete (UHPC) based on multiple machine learning algorithms. The autogenous shrinkage prediction model of UHPC with high prediction accuracy (R2 = 0.89) and strong generalization capability is established based on Gradient Boosting (GB) algorithm. The Graphic User Interface (GUI) of UHPC autogenous shrinkage prediction is designed, which assists in scientific research and engineering applications. Cement, silica fume, water, superabsorbent polymer, and expansive agent contents that are closely related to hydration process have prominent impacts on autogenous shrinkage of UHPC, while the fly ash, steel fibers, and sand contents show the slight impacts. The additions of superabsorbent polymer, expansive agent, steel fibers, sand, and superplasticizer effectively reduce the autogenous shrinkage of UHPC. Lower water to cement ratio causes larger autogenous shrinkage of UHPC.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [42] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [43] Effects of medium-burnt quicklime on autogenous shrinkage of ultra-high performance concrete cured at room temperature
    Li, Mingming
    Shi, Chen
    He, Tingshu
    Li, Qian
    Bu, Kaiyin
    Shi, Xijun
    CERAMICS INTERNATIONAL, 2024, 50 (15) : 26646 - 26653
  • [44] Study on autogenous shrinkage characteristic and mechanism of ultra-high performance cementitous composite
    Li Caixia
    Sun Zhilin
    Yang Liqi
    Zhang Guorong
    2017 5TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING, 2018, 324
  • [45] ULTRA-HIGH PERFORMANCE CONCRETE (UHPC) WITH SUBSTITUTION OF CEMENTITIOUS MATRIX BY WASTE
    Maria Dolores, Rubio-Cintas
    Maria Eugenia, Parron-Rubio
    Francisca, Perez-Garcia
    Jose Manuel, Garcia-Manrique
    Antonio, Gonzalez-Herrera
    6TH INTERNATIONAL CONFERENCE ON MECHANICAL MODELS IN STRUCTURAL ENGINEERING, CMMOST 2021, 2 EDITION, 2022, : 140 - 147
  • [46] Rheological characteristics of Ultra-High performance concrete (UHPC) incorporating bentonite
    Li, Keke
    Leng, Yong
    Xu, Liuliu
    Zhang, Junjie
    Liu, Kangning
    Fan, Dingqiang
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 349
  • [47] Intelligent design and manufacturing of ultra-high performance concrete (UHPC)-A review
    Fan, Dingqiang
    Zhu, Jinyun
    Fan, Mengxin
    Lu, Jian-Xin
    Chu, S. H.
    Dong, Enlai
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 385
  • [48] Investigation on bonding between timber and ultra-high performance concrete (UHPC)
    Schaefers, Martin
    Seim, Werner
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (07) : 3078 - 3088
  • [49] Enhancement of local concrete compression performance by incorporating ultra-high performance concrete (UHPC) tube
    Wang, Lifeng
    Wu, Haiqi
    Liu, Long
    Xiao, Ziwang
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2022, 18 (05) : 856 - 878
  • [50] Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete - A review
    Yang, Li
    Shi, Caijun
    Wu, Zemei
    COMPOSITES PART B-ENGINEERING, 2019, 178