Learning Unbiased Image Segmentation: A Case Study with Plain Knee Radiographs

被引:1
|
作者
Littlefield, Nickolas [1 ]
Plate, Johannes F. [1 ]
Weiss, Kurt R. [1 ]
Lohse, Ines [1 ]
Chhabra, Avani [1 ]
Siddiqui, Ismaeel A. [1 ]
Menezes, Zoe [1 ]
Mastorakos, George [2 ]
Thakar, Sakshi Mehul [1 ]
Abedian, Mehrnaz [1 ]
Gong, Matthew F. [1 ]
Carlson, Luke A. [1 ]
Moradi, Hamidreza [3 ]
Amirian, Soheyla [4 ]
Tafti, Ahmad P. [1 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[2] Cortechs Ai, San Diego, CA 92122 USA
[3] Univ Mississippi, Med Ctr, University, MS 38677 USA
[4] Univ Georgia, Athens, GA 30602 USA
基金
美国国家卫生研究院;
关键词
Image Segmentation; AI Fairness; Knee Radiographs; Unbiased Image Segmentation; Safe AI; REPLACEMENT;
D O I
10.1109/BHI58575.2023.10313433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic segmentation of knee bony anatomy is essential in orthopedics, and it has been around for several years in both pre-operative and post-operative settings. While deep learning algorithms have demonstrated exceptional performance in medical image analysis, the assessment of fairness and potential biases within these models remains limited. This study aims to revisit deep learning-powered knee-bony anatomy segmentation using plain radiographs to uncover visible gender and racial biases. The current contribution offers the potential to advance our understanding of biases, and it provides practical insights for researchers and practitioners in medical imaging. The proposed mitigation strategies mitigate gender and racial biases, ensuring fair and unbiased segmentation results. Furthermore, this work promotes equal access to accurate diagnoses and treatment outcomes for diverse patient populations, fostering equitable and inclusive healthcare provision.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Research on Image Segmentation Algorithm Based on Machine Learning- Case Study on Medical Image Processing
    Yu, Shun
    Xia, Yan
    Yin, Huiwen
    Li, Song
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2023, 19 : 20 - 21
  • [22] Improving Image Classification of Knee Radiographs: An Automated Image Labeling Approach
    Zhang, Jikai
    Santos, Carlos
    Park, Christine
    Mazurowski, Maciej A.
    Colglazier, Roy
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (06) : 2402 - 2410
  • [23] Preserving Privacy of Thoracic Radiographs Using Image Segmentation
    Sun, S. Y.
    Liu, F.
    Ma, N.
    Li, X.
    Tang, C. C.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (08) : 1982 - 1988
  • [24] Improving Image Classification of Knee Radiographs: An Automated Image Labeling Approach
    Jikai Zhang
    Carlos Santos
    Christine Park
    Maciej A. Mazurowski
    Roy Colglazier
    Journal of Digital Imaging, 2023, 36 : 2402 - 2410
  • [25] Image Segmentation for Detection of Knee Cartilage
    Thengade, Anita
    Mutha, Bhagyashree Hemant
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [26] AUTOMATIC KNEE OSTEOARTHRITIS SEVERITY ASSESSMENT FROM PLAIN RADIOGRAPHS WITH LIMITED DATA
    Nguyen, H. H.
    Saarakkala, S.
    Tiulpin, A.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S314 - S315
  • [27] Plain Radiographs Underestimate the Asymmetry of the Posterior Condylar Offset of the Knee Compared With MRI
    Voleti, Pramod B.
    Stephenson, Jason W.
    Lotke, Paul A.
    Lee, Gwo-Chin
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2014, 472 (01) : 155 - 161
  • [28] Subchondral abnormalities of the knee at plain radiographs or MR imaging: Association of cartilage abnormalities
    Kim, H
    Jee, W
    Kim, J
    Cho, SH
    Byun, J
    RADIOLOGY, 2002, 225 : 656 - 656
  • [29] Low order adaptive region growing for lung segmentation on plain chest radiographs
    Chondro, Peter
    Yao, Chih-Yuan
    Ruan, Shanq-Jang
    Chien, Li-Chien
    NEUROCOMPUTING, 2018, 275 : 1002 - 1011
  • [30] Adaptive segmentation of knee radiographs for selecting the optimal ROI in texture analysis
    Bayramoglu, N.
    Tiulpin, A.
    Hirvasniemi, J.
    Nieminen, M. T.
    Saarakkala, S.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (07) : 941 - 952