Wastewater-based epidemiology for tracking bacterial diversity and antibiotic resistance in COVID-19 isolation hospitals in Qatar

被引:4
|
作者
Johar, A. A. [1 ]
Salih, M. A. [2 ]
Abdelrahman, H. A. [2 ]
Al Mana, H. [2 ]
Hadi, H. A. [3 ]
Eltai, N. O. [2 ,4 ]
机构
[1] Barzan Holdings, Res & Dev Dept, Doha, Qatar
[2] Qatar Univ, Biomed Res Ctr, Doha, Qatar
[3] Hamad Med Corp, Infect Dis Div, Communicable Dis Ctr, Doha, Qatar
[4] Qatar Univ, Biomed Res Ctr, POB 2713, Doha, Qatar
关键词
Wastewater-based; epidemiology; COVID-19; Hospital; Antimicrobial resistance gene; Bacteria; ANTIMICROBIAL RESISTANCE; GUT MICROBIOME; POPULATION; GENES; SURVEILLANCE;
D O I
10.1016/j.jhin.2023.08.011
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Hospitals are hotspots for antimicrobial resistance genes (ARGs), and play a significant role in their emergence and spread. Large numbers of ARGs will be ejected from hospitals via wastewater systems. Wastewater-based epidemiology has been con-solidated as a tool to provide real-time information, and represents a promising approach to understanding the prevalence of bacteria and ARGs at community level. Aims: To determine bacterial diversity and identify ARG profiles in hospital wastewater pathogens obtained from coronavirus disease 2019 (COVID-19) isolation hospitals com-pared with non-COVID-19 facilities during the pandemic. Methods: Wastewater samples were obtained from four hospitals: three assigned to patients with COVID-19 patients and one assigned to non-COVID-19 patients. A microbial DNA quantitative polymerase chain reaction was used to determine bacterial diversity and ARGs. Findings: The assay recorded 27 different bacterial species in the samples, belonging to the following phyla: Firmicutes (44.4%), Proteobacteria (33.3%), Actinobacteria (11%), Bacteroidetes (7.4%) and Verrucomicrobiota (3.7%). In addition, 61 ARGs were detected in total. The highest number of ARGs was observed for the Hazem Mebaireek General Hos-pital (HMGH) COVID-19 patient site (88.5%), and the lowest number of ARGs was found for the HMGH non-patient site (24.1%). Conclusion: The emergence of contaminants in sewage water, such as ARGs and high pathogen levels, poses a potential risk to public health and the aquatic ecosystem. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of The Healthcare Infection Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [1] COVID-19 Surveillance Wastewater-based epidemiology
    Mullasseri, Sileesh
    CURRENT SCIENCE, 2021, 120 (11): : 1660 - 1660
  • [2] Wastewater-Based Epidemiology for Managing the COVID-19 Pandemic
    Fuschi, Claire
    Pu, Haihui
    Negri, Maria
    Colwell, Rita
    Chen, Junhong
    ACS ES&T WATER, 2021, 1 (06): : 1352 - 1362
  • [3] COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar
    Saththasivam, Jayaprakash
    El-Malah, Shimaa S.
    Gomez, Tricia A.
    Jabbar, Khadeeja A.
    Remanan, Reshma
    Krishnankutty, Arun K.
    Ogunbiyi, Oluwaseun
    Rasool, Kashif
    Ashhab, Sahel
    Rashkeev, Sergey
    Bensaad, Meryem
    Ahmed, Ayeda A.
    Mohamoud, Yasmin A.
    Malek, Joel A.
    Abu Raddad, Laith J.
    Jeremijenko, Andrew
    Abu Halaweh, Hussein A.
    Lawler, Jenny
    Mahmoud, Khaled A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 774
  • [4] A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal
    Monteiro, Silvia
    Rente, Daniela
    Cunha, Monica, V
    Gomes, Manuel Carmo
    Marques, Tiago A.
    Lourenco, Artur B.
    Cardoso, Eugenia
    Alvaro, Pedro
    Silva, Marco
    Coelho, Norberta
    Vilaca, Joao
    Meireles, Fatima
    Broco, Nuno
    Carvalho, Marta
    Santos, Ricardo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [5] Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey
    Chen, Chen
    Wang, Yunfan
    Kaur, Gursharn
    Adiga, Aniruddha
    Espinoza, Baltazar
    Venkatramanan, Srinivasan
    Warren, Andrew
    Lewis, Bryan
    Crow, Justin
    Singh, Rekha
    Lorentz, Alexandra
    Toney, Denise
    Marathe, Madhav
    EPIDEMICS, 2024, 49
  • [6] Wastewater-based epidemiology: a new frontier for tracking environmental persistence and community transmission of COVID-19
    Dutta, Harsh
    Kaushik, Geetanjali
    Dutta, Venkatesh
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (57) : 85688 - 85699
  • [7] Wastewater-based epidemiology: a new frontier for tracking environmental persistence and community transmission of COVID-19
    Harsh Dutta
    Geetanjali Kaushik
    Venkatesh Dutta
    Environmental Science and Pollution Research, 2022, 29 : 85688 - 85699
  • [8] Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective
    Xu, Like
    Ceolotto, Nicola
    Jagadeesan, Kishore
    Standerwick, Richard
    Robertson, Megan
    Barden, Ruth
    Kasprzyk-Hordern, Barbara
    WATER RESEARCH, 2024, 257
  • [9] Impact of easing COVID-19 restrictions on antibiotic usage in Eastern China using wastewater-based epidemiology
    Zang, Jinxin
    Jiang, Lufang
    Wang, Yingying
    Chen, Yue
    Fu, Chaowei
    Kasprzyk-Hordern, Barbara
    Wang, Na
    Jiang, Qingwu
    Lambert, Helen
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology
    Gonzalez, Raul
    Curtis, Kyle
    Bivins, Aaron
    Bibby, Kyle
    Weir, Mark H.
    Yetka, Kathleen
    Thompson, Hannah
    Keeling, David
    Mitchell, Jamie
    Gonzalez, Dana
    WATER RESEARCH, 2020, 186