Implicit Neural Representations for Joint Decomposition and Registration of Gene Expression Images in the Marmoset Brain

被引:1
|
作者
Byra, Michal [1 ,2 ]
Poon, Charissa [1 ]
Shimogori, Tomomi [3 ]
Skibbe, Henrik [1 ]
机构
[1] RIKEN Ctr Brain Sci, Brain Image Anal Unit, Wako, Saitama, Japan
[2] Polish Acad Sci, Inst Fundamental Technol Res, Warsaw, Poland
[3] RIKEN Ctr Brain Sci, Lab Mol Mech Brain Dev, Wako, Saitama, Japan
基金
日本学术振兴会;
关键词
brain; deep learning; gene expression; implicit neural representations; registration; INVARIANT REGISTRATION;
D O I
10.1007/978-3-031-43999-5_61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel image registration method based on implicit neural representations that addresses the challenging problem of registering a pair of brain images with similar anatomical structures, but where one image contains additional features or artifacts that are not present in the other image. To demonstrate its effectiveness, we use 2D microscopy in situ hybridization gene expression images of the marmoset brain. Accurately quantifying gene expression requires image registration to a brain template, which is difficult due to the diversity of patterns causing variations in visible anatomical brain structures. Our approach uses implicit networks in combination with an image exclusion loss to jointly perform the registration and decompose the image into a support and residual image. The support image aligns well with the template, while the residual image captures individual image characteristics that diverge from the template. In experiments, our method provided excellent results and outperformed other registration techniques.
引用
收藏
页码:645 / 654
页数:10
相关论文
共 50 条
  • [1] Exploring the performance of implicit neural representations for brain image registration
    Michal Byra
    Charissa Poon
    Muhammad Febrian Rachmadi
    Matthias Schlachter
    Henrik Skibbe
    Scientific Reports, 13
  • [2] Exploring the performance of implicit neural representations for brain image registration
    Byra, Michal
    Poon, Charissa
    Rachmadi, Muhammad Febrian
    Schlachter, Matthias
    Skibbe, Henrik
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Implicit Neural Representations for Deformable Image Registration
    Wolterink, Jelmer M.
    Zwienenberg, Jesse C.
    Brune, Christoph
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1349 - 1359
  • [4] Towards Generalised Neural Implicit Representations for Image Registration
    Zimmer, Veronika A.
    Hammernik, Kerstin
    Sideri-Lampretsa, Vasiliki
    Huang, Wenqi
    Reithmeir, Anna
    Rueckert, Daniel
    Schnabel, Julia A.
    DEEP GENERATIVE MODELS, DGM4MICCAI 2023, 2024, 14533 : 45 - 55
  • [5] Implicit Neural Representations for Deconvolving SAS Images
    Reed, Albert
    Blanford, Thomas
    Brown, Daniel C.
    Jayasuriya, Suren
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [6] VIINTER: View Interpolation with Implicit Neural Representations of Images
    Feng, Brandon Yushan
    Jabbireddy, Susmija
    Varshney, Amitabh
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [7] Joint Segmentation and Registration for Infant Brain Images
    Wu, Guorong
    Wang, Li
    Gilmore, John
    Lin, Weili
    Shen, Dinggang
    MEDICAL COMPUTER VISION: ALGORITHMS FOR BIG DATA, 2014, 8848 : 13 - 21
  • [8] Deformable Image Registration with Geometry-informed Implicit Neural Representations
    van Harten, Louis D.
    van Herten, Rudolf L. M.
    Stoker, Jaap
    Isgum, Ivana
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 730 - 742
  • [9] SINR: Deconvolving Circular SAS Images Using Implicit Neural Representations
    Reed, Albert
    Blanford, Thomas
    Brown, Daniel C.
    Jayasuriya, Suren
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (02) : 458 - 472
  • [10] Scalable joint segmentation and registration framework for infant brain images
    Dong, Pei
    Wang, Li
    Lina, Weili
    Shen, Dinggang
    Wu, Guorong
    NEUROCOMPUTING, 2017, 229 : 54 - 62