Towards Generalised Neural Implicit Representations for Image Registration

被引:0
|
作者
Zimmer, Veronika A. [1 ,2 ,3 ]
Hammernik, Kerstin [1 ,5 ]
Sideri-Lampretsa, Vasiliki [1 ]
Huang, Wenqi [1 ]
Reithmeir, Anna [1 ,2 ,4 ]
Rueckert, Daniel [1 ,3 ,5 ]
Schnabel, Julia A. [1 ,2 ,4 ,6 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[2] Helmholtz Munich, Munich, Germany
[3] Tech Univ Munich, Sch Med, Klinikum Rechts Isar, Munich, Germany
[4] Munich Ctr Machine Learning MCML, Munich, Germany
[5] Imperial Coll London, Dept Comp, London, England
[6] Kings Coll London, London, England
来源
关键词
Image registration; Neural implicit representation; Generalisation; Periodic activation functions; LEARNING FRAMEWORK;
D O I
10.1007/978-3-031-53767-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural implicit representations (NIRs) enable to generate and parametrize the transformation for image registration in a continuous way. By design, these representations are image-pair-specific, meaning that for each signal a new multi-layer perceptron has to be trained. In this work, we investigate for the first time the potential of existent NIR generalisation methods for image registration and propose novel methods for the registration of a group of image pairs using NIRs. To exploit the generalisation potential of NIRs, we encode the fixed and moving image volumes to latent representations, which are then used to condition or modulate the NIR. Using ablation studies on a 3D benchmark dataset, we show that our methods are able to generalise to a set of image pairs with a performance comparable to pairwise registration using NIRs when trained on N = 10 and N = 120 datasets. Our results demonstrate the potential of generalised NIRs for 3D deformable image registration.
引用
收藏
页码:45 / 55
页数:11
相关论文
共 50 条
  • [1] Implicit Neural Representations for Deformable Image Registration
    Wolterink, Jelmer M.
    Zwienenberg, Jesse C.
    Brune, Christoph
    [J]. INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1349 - 1359
  • [2] Exploring the performance of implicit neural representations for brain image registration
    Michal Byra
    Charissa Poon
    Muhammad Febrian Rachmadi
    Matthias Schlachter
    Henrik Skibbe
    [J]. Scientific Reports, 13
  • [3] Exploring the performance of implicit neural representations for brain image registration
    Byra, Michal
    Poon, Charissa
    Rachmadi, Muhammad Febrian
    Schlachter, Matthias
    Skibbe, Henrik
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Deformable Image Registration with Geometry-informed Implicit Neural Representations
    van Harten, Louis D.
    van Herten, Rudolf L. M.
    Stoker, Jaap
    Isgum, Ivana
    [J]. MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 730 - 742
  • [5] Implicit Neural Representations for Image Compression
    Strumpler, Yannick
    Postels, Janis
    Yang, Ren
    Van Gool, Luc
    Tombari, Federico
    [J]. COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 74 - 91
  • [6] Hyperspectral Image Compression Using Implicit Neural Representations
    Rezasoltani, Shima
    Qureshi, Faisal Z.
    [J]. Proceedings - 2023 20th Conference on Robots and Vision, CRV 2023, 2023, : 248 - 255
  • [7] Hyperspectral Image Compression Using Implicit Neural Representations
    Rezasoltani, Shima
    Qureshi, Faisal Z.
    [J]. 2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 248 - 255
  • [8] Hyperspectral Image Compression Using Sampling and Implicit Neural Representations
    Rezasoltani, Shima
    Qureshi, Faisal Z.
    [J]. arXiv, 2023,
  • [9] Sobolev Training for Implicit Neural Representations with Approximated Image Derivatives
    Yuan, Wentao
    Zhu, Qingtian
    Liu, Xiangyue
    Ding, Yikang
    Zhang, Haotian
    Zhang, Chi
    [J]. COMPUTER VISION - ECCV 2022, PT XV, 2022, 13675 : 72 - 88
  • [10] Robust Deformable Image Registration Using Cycle-Consistent Implicit Representations
    van Harten, Louis D.
    Stoker, Jaap
    Isgum, Ivana
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 784 - 793