Towards Generalised Neural Implicit Representations for Image Registration

被引:0
|
作者
Zimmer, Veronika A. [1 ,2 ,3 ]
Hammernik, Kerstin [1 ,5 ]
Sideri-Lampretsa, Vasiliki [1 ]
Huang, Wenqi [1 ]
Reithmeir, Anna [1 ,2 ,4 ]
Rueckert, Daniel [1 ,3 ,5 ]
Schnabel, Julia A. [1 ,2 ,4 ,6 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[2] Helmholtz Munich, Munich, Germany
[3] Tech Univ Munich, Sch Med, Klinikum Rechts Isar, Munich, Germany
[4] Munich Ctr Machine Learning MCML, Munich, Germany
[5] Imperial Coll London, Dept Comp, London, England
[6] Kings Coll London, London, England
来源
关键词
Image registration; Neural implicit representation; Generalisation; Periodic activation functions; LEARNING FRAMEWORK;
D O I
10.1007/978-3-031-53767-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural implicit representations (NIRs) enable to generate and parametrize the transformation for image registration in a continuous way. By design, these representations are image-pair-specific, meaning that for each signal a new multi-layer perceptron has to be trained. In this work, we investigate for the first time the potential of existent NIR generalisation methods for image registration and propose novel methods for the registration of a group of image pairs using NIRs. To exploit the generalisation potential of NIRs, we encode the fixed and moving image volumes to latent representations, which are then used to condition or modulate the NIR. Using ablation studies on a 3D benchmark dataset, we show that our methods are able to generalise to a set of image pairs with a performance comparable to pairwise registration using NIRs when trained on N = 10 and N = 120 datasets. Our results demonstrate the potential of generalised NIRs for 3D deformable image registration.
引用
收藏
页码:45 / 55
页数:11
相关论文
共 50 条
  • [21] CORRECTING DISTORTION of IMAGE by IMAGE REGISTRATION with the IMPLICIT FUNCTION THEOREM
    Tamaki, Toru
    Yamamura, Tsuyoshi
    Ohnishi, Noboru
    [J]. International Journal of Image and Graphics, 2002, 2 (02) : 309 - 329
  • [22] Implicit body representations and the conscious body image
    Longo, Matthew R.
    Haggard, Patrick
    [J]. ACTA PSYCHOLOGICA, 2012, 141 (02) : 164 - 168
  • [23] SIGNAL COMPRESSION VIA NEURAL IMPLICIT REPRESENTATIONS
    Pistilli, Francesca
    Valsesia, Diego
    Fracastoro, Giulia
    Magli, Enrico
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3733 - 3737
  • [24] Implicit Neural Representations with Periodic Activation Functions
    Sitzmann, Vincent
    Martel, Julien N. P.
    Bergman, Alexander W.
    Lindell, David B.
    Wetzstein, Gordon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [25] Seeing Implicit Neural Representations as Fourier Series
    Benbarka, Nuri
    Hofer, Timon
    Riaz, Hamd Ul-moqeet
    Zell, Andreas
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2283 - 2292
  • [26] Hypernetworks Build Implicit Neural Representations of Sounds
    Szatkowski, Filip
    Piczak, Karol J.
    Spurek, Przemyslaw
    Tabor, Jacek
    Trzcinski, Tomasz
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 661 - 676
  • [27] Implicit Neural Representations for Medical Imaging Segmentation
    Khan, Muhammad Osama
    Fang, Yi
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 433 - 443
  • [28] A Structured Dictionary Perspective on Implicit Neural Representations
    Yuce, Gizem
    Ortiz-Jimenez, Guillermo
    Besbinar, Beril
    Frossard, Pascal
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19206 - 19216
  • [29] Implicit Representations of Meaning in Neural Language Models
    Li, Belinda Z.
    Nye, Maxwell
    Andreas, Jacob
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 1813 - 1827
  • [30] Implicit Surface Representations as Layers in Neural Networks
    Michalkiewicz, Mateusz
    Pontes, Jhony K.
    Jack, Dominic
    Baktashmotlagh, Mahsa
    Eriksson, Anders
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4742 - 4751