Bayesian weighted random forest for classification of high-dimensional genomics data

被引:7
|
作者
Olaniran, Oyebayo Ridwan [1 ]
Abdullah, Mohd Asrul A. [2 ]
机构
[1] Univ Ilorin, Dept Stat, Ilorin, Nigeria
[2] UTHM, Dept Math & Stat, FAST, Parit Raja, Johor, Malaysia
关键词
Bayesian; High-dimensional; Genomic data; Classifcation; Random forest; VARIABLE SELECTION; BREAST-CANCER; GENE; PREDICTION; TUMOR; PATTERNS; LEUKEMIA;
D O I
10.1016/j.kjs.2023.06.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a full Bayesian weighted probabilistic model is developed for random classification trees. The new model Bayesian Weighted Random Classification Forest (BWRCF) arises from the modification of the existing random classification forest in two ways. Firstly, the tree terminal node estimation procedure is replaced with a Bayesian estimation approach. Secondly, a new variable ranking procedure is developed and then hybridized with BWRCF to tackle the high-dimensionality issues. The performance of the proposed method is analyzed using simulated and real-life high-dimensional microarray datasets based on holdout accuracy and misclassification error rates. The results of the analyses showed that the proposed BWRCF is robust in terms of its ability to withstand moderate to large high-dimensionality scenarios. In addition, BWRCF also has improved predictive and efficiency abilities over selected competing methods.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 50 条
  • [31] A Compressive Classification Framework for High-Dimensional Data
    Tabassum, Muhammad Naveed
    Ollila, Esa
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2020, 1 : 177 - 186
  • [32] A training algorithm for classification of high-dimensional data
    Vieira, A
    Barradas, N
    NEUROCOMPUTING, 2003, 50 : 461 - 472
  • [33] Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
    Hong, David
    Yang, Fan
    Fessler, Jeffrey A.
    Balzano, Laura
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (01): : 222 - 250
  • [34] Ensemble Method for Classification of High-Dimensional Data
    Piao, Yongjun
    Park, Hyun Woo
    Jin, Cheng Hao
    Ryu, Keun Ho
    2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 245 - +
  • [35] Bayesian variable selection in clustering high-dimensional data
    Tadesse, MG
    Sha, N
    Vannucci, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 602 - 617
  • [36] Efficient quadratures for high-dimensional Bayesian data assimilation
    Cheng, Ming
    Wang, Peng
    Tartakovsky, Daniel M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 506
  • [37] Bayesian variable selection for high-dimensional rank data
    Cui, Can
    Singh, Susheela P.
    Staicu, Ana-Maria
    Reich, Brian J.
    ENVIRONMETRICS, 2021, 32 (07)
  • [38] Adaptive Bayesian density regression for high-dimensional data
    Shen, Weining
    Ghosal, Subhashis
    BERNOULLI, 2016, 22 (01) : 396 - 420
  • [39] Boosting threshold classifiers for high-dimensional data in functional genomics
    Lausser, Ludwig
    Buchholz, Malte
    Kestler, Hans A.
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2008, 5064 : 147 - +
  • [40] Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics
    Li, Fan
    Zhang, Nancy R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1202 - 1214