Integrated Analysis of the Transcriptome and Metabolome of Brassica rapa Revealed Regulatory Mechanism under Heat Stress

被引:5
|
作者
Yu, Jing [1 ]
Li, Pengli [1 ]
Tu, Song [1 ]
Feng, Ningxiao [1 ]
Chang, Liying [1 ]
Niu, Qingliang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
关键词
heat stress; transcriptome; metabolome; brassica rapa; WHEAT CULTIVARS; EXPRESSION; GENE; IDENTIFICATION; TOLERANCE; RESPONSES; PROTEINS; FAMILY; PLANTS;
D O I
10.3390/ijms241813993
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Affected by global warming; heat stress is the main limiting factor for crop growth and development. Brassica rapa prefers cool weather, and heat stress has a significant negative impact on its growth, development, and metabolism. Understanding the regulatory patterns of heat-resistant and heat-sensitive varieties under heat stress can help deepen understanding of plant heat tolerance mechanisms. In this study, an integrative analysis of transcriptome and metabolome was performed on the heat-tolerant ('WYM') and heat-sensitive ('AJH') lines of Brassica rapa to reveal the regulatory networks correlated to heat tolerance and to identify key regulatory genes. Heat stress was applied to two Brassica rapa cultivars, and the leaves were analyzed at the transcriptional and metabolic levels. The results suggest that the heat shock protein (HSP) family, plant hormone transduction, chlorophyll degradation, photosynthetic pathway, and reactive oxygen species (ROS) metabolism play an outstanding role in the adaptation mechanism of plant heat tolerance. Our discovery lays the foundation for future breeding of horticultural crops for heat resistance.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Integrated analysis of metabolome and transcriptome reveals key candidate genes involved in flavonoid biosynthesis in Pinellia ternata under heat stress
    Guo, Lianan
    Tan, Jun
    Deng, Xiaoshu
    Mo, Rangyu
    Pan, Yuan
    Cao, Yueqing
    Chen, Daxia
    JOURNAL OF PLANT RESEARCH, 2023, 136 (03) : 359 - 369
  • [22] Integrated analysis of metabolome and transcriptome reveals key candidate genes involved in flavonoid biosynthesis in Pinellia ternata under heat stress
    Lianan Guo
    Jun Tan
    Xiaoshu Deng
    Rangyu Mo
    Yuan Pan
    Yueqing Cao
    Daxia Chen
    Journal of Plant Research, 2023, 136 : 359 - 369
  • [23] Transcriptome and metabolome integrated analysis revealed the effects and potential mechanism of hydrogen peroxide on antioxidant system in postharvest broccoli
    Zhang, Yuxiao
    Chen, Ying
    Guo, Yanyin
    Sun, Yupeng
    Wang, Zhengli
    Wang, Yunqiao
    Guan, Lingxing
    Wang, Liang
    Zhou, Qingxin
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2023, 206
  • [24] Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.)
    Zheng, Xinyi
    Zhu, Qing
    Liu, Yi
    Chen, Junxiang
    Wang, Lingxia
    Xiu, Yu
    Zheng, Haoyue
    Lin, Shanzhi
    Ling, Peng
    Tang, Minqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [25] Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
    Wang, Yubin
    Liu, Wei
    Li, Wei
    Wang, Caijie
    Dai, Haiying
    Xu, Ran
    Zhang, Yanwei
    Zhang, Lifeng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [26] Combined Analysis of the Transcriptome and Metabolome Revealed the Mechanism of Petal Coloration in Bauhinia variegata
    Zhang, Geng
    Yang, Xiaohui
    Xu, Fang
    Wei, Dan
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Insights into drought stress response mechanism of tobacco during seed germination by integrated analysis of transcriptome and metabolome
    Ren, Xiaomin
    Yang, Chenkai
    Zhu, Xianxin
    Yi, Pengfei
    Jiang, Xizhen
    Yang, Jiashuo
    Xiang, Shipeng
    Li, Yunxia
    Yu, Bei
    Yan, Weijie
    Li, Xiaoxu
    Li, Yangyang
    Hu, Risheng
    Hu, Zhengrong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 209
  • [28] The molecular mechanism of eggplant parthenocarpy revealed through a combined analysis of the transcriptome and the metabolome
    Zhou, Shanshan
    Yang, Yang
    Zou, Min
    Tao, Tao
    Tang, Xiaohua
    Wang, Yongqing
    Tian, Shibing
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 193
  • [29] Correction to: Integrated analysis of metabolome and transcriptome reveals key candidate genes involved in flavonoid biosynthesis in Pinellia ternata under heat stress
    Lianan Guo
    Jun Tan
    Xiaoshu Deng
    Rangyu Mo
    Yuan Pan
    Yueqing Cao
    Daxia Chen
    Journal of Plant Research, 2023, 136 : 577 - 577
  • [30] Flavonoid profile of Anoectochilus roxburghii (Wall.) Lindl. Under short-term heat stress revealed by integrated metabolome, transcriptome, and biochemical analyses
    Cui, Meng
    Liang, Zhiyan
    Liu, Yuxin
    Sun, Qifang
    Wu, Dong
    Luo, Liping
    Hao, Yingbin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 201