Global and Local Mixture Consistency Cumulative Learning for Long-tailed Visual Recognitions

被引:26
|
作者
Du, Fei [1 ,2 ,3 ]
Yang, Peng [1 ,3 ]
Jia, Qi [1 ,3 ]
Nan, Fengtao [1 ,2 ,3 ]
Chen, Xiaoting [1 ,3 ]
Yang, Yun [1 ,3 ]
机构
[1] Yunnan Univ, Natl Pilot Sch Software, Kunming, Peoples R China
[2] Yunnan Univ, Sch Informat Sci & Engn, Kunming, Peoples R China
[3] Yunnan Key Lab Software Engn, Kunming, Peoples R China
关键词
D O I
10.1109/CVPR52729.2023.01518
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, our goal is to design a simple learning paradigm for long-tail visual recognition, which not only improves the robustness of the feature extractor but also alleviates the bias of the classifier towards head classes while reducing the training skills and overhead. We propose an efficient one-stage training strategy for long-tailed visual recognition called Global and Local Mixture Consistency cumulative learning (GLMC). Our core ideas are twofold: (1) a global and local mixture consistency loss improves the robustness of the feature extractor. Specifically, we generate two augmented batches by the global MixUp and local CutMix from the same batch data, respectively, and then use cosine similarity to minimize the difference. (2) A cumulative head-tail soft label reweighted loss mitigates the head class bias problem. We use empirical class frequencies to reweight the mixed label of the head-tail class for long-tailed data and then balance the conventional loss and the rebalanced loss with a coefficient accumulated by epochs. Our approach achieves state-of-the-art accuracy on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT datasets. Additional experiments on balanced ImageNet and CIFAR demonstrate that GLMC can significantly improve the generalization of backbones. Code is made publicly available at https://github.com/ynu-yangpeng/GLMC.
引用
收藏
页码:15814 / 15823
页数:10
相关论文
共 50 条
  • [41] Feature Re-Balancing for Long-Tailed Visual Recognition
    Zhao, Yan
    Chen, Weicong
    Huang, Kai
    Zhu, Jihong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [42] Dynamic Learnable Logit Adjustment for Long-Tailed Visual Recognition
    Zhang, Enhao
    Geng, Chuanxing
    Li, Chaohua
    Chen, Songcan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 7986 - 7997
  • [43] Long-tailed recognition via key attribute learning
    Fu, Yu
    Han, Jungong
    Chang, Xiang
    Chen, Changrui
    Shang, Changjing
    Shen, Qiang
    NEUROCOMPUTING, 2025, 627
  • [44] Long-Tailed Learning as Multi-Objective Optimization
    Li, Weiqi
    Lyu, Fan
    Shang, Fanhua
    Wan, Liang
    Feng, Wei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3190 - 3198
  • [45] Few-shot learning with long-tailed labels
    Zhang, Hongliang
    Chen, Shuo
    Luo, Lei
    Yang, Jiang
    PATTERN RECOGNITION, 2024, 156
  • [46] Class Instance Balanced Learning for Long-Tailed Classification
    Lavoie, Marc-Antoine
    Waslander, Steven L.
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 121 - 128
  • [47] Targeted Supervised Contrastive Learning for Long-Tailed Recognition
    Li, Tianhong
    Cao, Peng
    Yuan, Yuan
    Fan, Lijie
    Yang, Yuzhe
    Feris, Rogerio
    Indyk, Piotr
    Katabi, Dina
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6908 - 6918
  • [48] Towards Effective Collaborative Learning in Long-Tailed Recognition
    Xu, Zhengzhuo
    Chai, Zenghao
    Xu, Chengyin
    Yuan, Chun
    Yang, Haiqin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3754 - 3764
  • [49] FCC: Feature Clusters Compression for Long-Tailed Visual Recognition
    Li, Jian
    Meng, Ziyao
    Shi, Daqian
    Song, Rui
    Diao, Xiaolei
    Wang, Jingwen
    Xu, Hao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24080 - 24089
  • [50] Feature calibration and feature separation for long-tailed visual recognition
    Wang, Qianqian
    Zhou, Fangyu
    Zhao, Xiangge
    Lin, Yangtao
    Ye, Haibo
    NEUROCOMPUTING, 2025, 637