Iterative threshold-based Naive bayes classifier

被引:1
|
作者
Romano, Maurizio [1 ]
Zammarchi, Gianpaolo [1 ]
Conversano, Claudio [1 ]
机构
[1] Univ Cagliari, Dept Econ & Business Sci, Viale Fra Ignazio 17, I-09123 Cagliari, Italy
来源
STATISTICAL METHODS AND APPLICATIONS | 2024年 / 33卷 / 01期
关键词
Naive bayes; Post-hoc analysis; Customer satisfaction; Sentiment analysis; Natural language processing; Booking.com; SENTIMENT ANALYSIS; REVIEWS;
D O I
10.1007/s10260-023-00721-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The iterative Threshold-based Naive Bayes (iTb-NB) classifier is introduced as a (simple) improved version of the previously introduced non-iterative Threshold-based Naive Bayes (Tb-NB) classifier. iTb-NB starts from a Natural Language text-corpus and allows the user to quantify with a numeric value a sentiment (positive or negative) from a specific test. Differently from Tb-NB, iTb-NB is an algorithm aimed at estimating multiple threshold values that concur to refine Tb-NB's decision rules when classifying a text into positive (negative) based on its content. Observations with sentiment scores close to the threshold are marked to be reclassified, hence a new decision rule is defined for them. Such "iterative" process improves the quality of predictions w.r.t. Tb-NB but keeping the possibility to utilize its results as the input of useful post-hoc analyses. The effectiveness of iTb-NB is evaluated analyzing hotel guests' reviews from all hotels located in the Sardinia region and available on Booking.com. Furthermore, iTb-NB is compared with Tb-NB in terms of model accuracy, resistance to noise, and computational efficiency.
引用
收藏
页码:235 / 265
页数:31
相关论文
共 50 条
  • [31] Weighted Naive Bayes Classifier on Categorical Features
    Omura, Kazuhiro
    Kudo, Mineichi
    Endo, Tomomi
    Murai, Tetsuya
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 865 - 870
  • [32] Applying Naive Bayes Classifier to Document Clustering
    Ji, Jie
    Zhao, Qiangfu
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2010, 14 (06) : 624 - 630
  • [33] An aggregated fuzzy naive bayes data classifier
    Tütüncü, G. Yazgi
    Kayaalp, Necla
    Journal of Computational and Applied Mathematics, 2015, 286 : 17 - 27
  • [34] Texture Classification using Naive Bayes Classifier
    Mansour, Ayman M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (01): : 112 - 120
  • [35] Exact Learning Augmented Naive Bayes Classifier
    Sugahara, Shouta
    Ueno, Maomi
    ENTROPY, 2021, 23 (12)
  • [36] Incremental discretization for Naive-Bayes classifier
    Lu, Jingli
    Yang, Ying
    Webb, Geoffrey I.
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 223 - 238
  • [37] Regularization and averaging of the selective Naive Bayes classifier
    Boulle, Marc
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1680 - 1688
  • [38] An Extension of Tree Augmented Naive Bayes Classifier
    Wang, Zhongfeng
    Tian, Jianwei
    2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 1, 2011, : 243 - 246
  • [39] Federated Learning with Discriminative Naive Bayes Classifier
    Torrijos, Pablo
    Alfaro, Juan C.
    Gamez, Jose A.
    Puerta, Jose M.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II, 2025, 15347 : 328 - 339
  • [40] Understanding of the Naive Bayes Classifier in Spam Filtering
    Wei, Qijia
    6TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2018), 2018, 1967