The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

被引:0
|
作者
Fu, Shengbin [2 ]
Wang, Weiwei [1 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Fujian Univ, Key Lab Operat Res & Cybernet, Fuzhou 350108, Peoples R China
关键词
Compressible Hall-magnetohydrodynamics system; Optimal temporal decay rates; Fixed point theorem; Pure energy methods; RAYLEIGH-TAYLOR INSTABILITY; GLOBAL EXISTENCE; WELL-POSEDNESS; WEAK SOLUTIONS; BLOW-UP; SMOOTH SOLUTIONS; BESOV-SPACES; TIME-DECAY; EQUATIONS; CRITERIA;
D O I
10.1007/s00021-023-00820-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium (& rho; over bar ,0,B over bar )\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$({\bar{\rho }},0,\bar{\textbf{B}})$$\end{document}, provided that the initial perturbation belonging to H3(R3)& AND;B2,& INFIN;-s(R3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H<^>3({\mathbb {R}}<^>3) \cap B_{2, \infty }<^>{-s}({\mathbb {R}}<^>3)$$\end{document} for s & ISIN;(0,32]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s \in (0,\frac{3}{2}]$$\end{document} is sufficiently small.
引用
收藏
页数:20
相关论文
共 50 条