The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

被引:0
|
作者
Fu, Shengbin [2 ]
Wang, Weiwei [1 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Fujian Univ, Key Lab Operat Res & Cybernet, Fuzhou 350108, Peoples R China
关键词
Compressible Hall-magnetohydrodynamics system; Optimal temporal decay rates; Fixed point theorem; Pure energy methods; RAYLEIGH-TAYLOR INSTABILITY; GLOBAL EXISTENCE; WELL-POSEDNESS; WEAK SOLUTIONS; BLOW-UP; SMOOTH SOLUTIONS; BESOV-SPACES; TIME-DECAY; EQUATIONS; CRITERIA;
D O I
10.1007/s00021-023-00820-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium (& rho; over bar ,0,B over bar )\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$({\bar{\rho }},0,\bar{\textbf{B}})$$\end{document}, provided that the initial perturbation belonging to H3(R3)& AND;B2,& INFIN;-s(R3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H<^>3({\mathbb {R}}<^>3) \cap B_{2, \infty }<^>{-s}({\mathbb {R}}<^>3)$$\end{document} for s & ISIN;(0,32]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s \in (0,\frac{3}{2}]$$\end{document} is sufficiently small.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System
    Shengbin Fu
    Weiwei Wang
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [2] Optimal temporal decay rates for 3D compressible magnetohydrodynamics system with nonlinear damping
    Zeng, Ruixin
    Fu, Shengbin
    Wang, Weiwei
    APPLIED MATHEMATICS LETTERS, 2024, 156
  • [3] Dynamo action in magnetohydrodynamics and Hall-magnetohydrodynamics
    Mininni, PD
    Gómez, DO
    Mahajan, S
    ASTROPHYSICAL JOURNAL, 2003, 587 (01): : 472 - 481
  • [4] Waves in the Hall-magnetohydrodynamics model
    Hameiri, E
    Ishizawa, A
    Ishida, A
    PHYSICS OF PLASMAS, 2005, 12 (07) : 1 - 13
  • [5] Markov Selections for the Magnetohydrodynamics and the Hall-Magnetohydrodynamics Systems
    Yamazaki, Kazuo
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1761 - 1812
  • [6] Markov Selections for the Magnetohydrodynamics and the Hall-Magnetohydrodynamics Systems
    Kazuo Yamazaki
    Journal of Nonlinear Science, 2019, 29 : 1761 - 1812
  • [7] Optimal temporal decay rates for the compressible viscoelastic flows
    Fu, Shengbin
    Huang, Wenting
    Wang, Weiwei
    ANALYSIS AND APPLICATIONS, 2023, 21 (05) : 1365 - 1389
  • [8] Hybrid and Hall-magnetohydrodynamics simulations of collisionless reconnection: Effect of the ion pressure tensor and particle Hall-magnetohydrodynamics
    Yin, L
    Winske, D
    Gary, SP
    Birn, J
    PHYSICS OF PLASMAS, 2002, 9 (06) : 2575 - 2584
  • [9] Global existence and analyticity of solution for the generalized Hall-magnetohydrodynamics system
    Wang, Yuzhu
    Li, Weijia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6363 - 6377
  • [10] Well-posedness for Hall-magnetohydrodynamics
    Chae, Dongho
    Degond, Pierre
    Liu, Jian-Guo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 555 - 565