Deep-Learning-Based Visualization and Volumetric Analysis of Fluid Regions in Optical Coherence Tomography Scans

被引:1
|
作者
Kasireddy, Harishwar Reddy [1 ]
Kallam, Udaykanth Reddy [1 ]
Mantrala, Sowmitri Karthikeya Siddhartha [1 ]
Kongara, Hemanth [1 ]
Shivhare, Anshul [1 ]
Saita, Jayesh [2 ]
Vijay, Sharanya [2 ]
Prasad, Raghu [2 ]
Raman, Rajiv [3 ]
Seelamantula, Chandra Sekhar [1 ]
机构
[1] Indian Inst Sci, Dept Elect Engn, Bengaluru 560012, India
[2] Carl Zeiss India Pvt Ltd, Bengaluru 560099, India
[3] Sankara Nethralaya, Shri Bhagwan Mahavir Vitreoretinal Serv, Chennai 600006, India
关键词
optical coherence tomography; deep learning; visualization; classification; fluid volume computation; SPECKLE; QUANTIFICATION; STATISTICS; REDUCTION;
D O I
10.3390/diagnostics13162659
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Retinal volume computation is one of the critical steps in grading pathologies and evaluating the response to a treatment. We propose a deep-learning-based visualization tool to calculate the fluid volume in retinal optical coherence tomography (OCT) images. The pathologies under consideration are Intraretinal Fluid (IRF), Subretinal Fluid (SRF), and Pigmented Epithelial Detachment (PED). We develop a binary classification model for each of these pathologies using the Inception-ResNet-v2 and the small Inception-ResNet-v2 models. For visualization, we use several standard Class Activation Mapping (CAM) techniques, namely Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM, and Self-Matching CAM, to visualize the pathology-specific regions in the image and develop a novel Ensemble-CAM visualization technique for robust visualization of OCT images. In addition, we demonstrate a Graphical User Interface that takes the visualization heat maps as the input and calculates the fluid volume in the OCT C-scans. The volume is computed using both the region-growing algorithm and selective thresholding technique and compared with the ground-truth volume based on expert annotation. We compare the results obtained using the standard Inception-ResNet-v2 model with a small Inception-ResNet-v2 model, which has half the number of trainable parameters compared with the original model. This study shows the relevance and usefulness of deep-learning-based visualization techniques for reliable volumetric analysis.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Deep learning-based image quality assessment for optical coherence tomography macular scans: a multicentre study
    Tang, Ziqi
    Wang, Xi
    Ran, An Ran
    Yang, Dawei
    Ling, Anni
    Yam, Jason C.
    Zhang, Xiujuan
    Szeto, Simon K. H.
    Chan, Jason
    Wong, Cherie Y. K.
    Hui, Vivian W. K.
    Chan, Carmen K. M.
    Wong, Tien Yin
    Cheng, Ching-Yu
    Sabanayagam, Charumathi
    Tham, Yih Chung
    Liew, Gerald
    Anantharaman, Giridhar
    Raman, Rajiv
    Cai, Yu
    Che, Haoxuan
    Luo, Luyang
    Liu, Quande
    Wong, Yiu Lun
    Ngai, Amanda K. Y.
    Yuen, Vincent L.
    Kei, Nelson
    Lai, Timothy Y. Y.
    Chen, Hao
    Tham, Clement C.
    Heng, Pheng-Ann
    Cheung, Carol Y.
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (11) : 1555 - 1563
  • [22] A deep learning based pipeline for optical coherence tomography angiography
    Liu, Xi
    Huang, Zhiyu
    Wang, Zhenzhou
    Wen, Chenyao
    Jiang, Zhe
    Yu, Zekuan
    Liu, Jingfeng
    Liu, Gangjun
    Huang, Xiaolin
    Maier, Andreas
    Ren, Qiushi
    Lu, Yanye
    JOURNAL OF BIOPHOTONICS, 2019, 12 (10)
  • [23] Digital refocusing based on deep learning in optical coherence tomography
    Yuan, Zhuoqun
    Yang, Di
    Yang, Zihan
    Zhao, Jingzhu
    Liang, Yanmei
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (05): : 3005 - 3020
  • [24] Automated volumetric segmentation of retinal fluid on optical coherence tomography
    Wang, Jie
    Zhang, Miao
    Pechauer, Alex D.
    Liu, Liang
    Hwang, Thomas S.
    Wilson, David J.
    Li, Dengwang
    Jia, Yali
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (04): : 1577 - 1589
  • [25] Volumetric montage for large field of view optical coherence tomography angiography scans
    Lewis, Warren
    De Sisternes, Luis
    Kubach, Sophie
    Waheed, Nadia
    Korobelnik, Jean-Francois
    Nailly, Manon
    Couturier, Aude
    Bonnin, Sophie
    Tadayoni, Ramin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [26] Diagnosis of Choroidal Disease With Deep Learning-Based Image Enhancement and Volumetric Quantification of Optical Coherence Tomography
    Maruyama, Kazuichi
    Mei, Song
    Sakaguchi, Hirokazu
    Hara, Chikako
    Miki, Atsuya
    Mao, Zaixing
    Kawasaki, Ryo
    Wang, Zhenguo
    Sakimoto, Susumu
    Hashida, Noriyasu
    Quantock, Andrew J.
    Chan, Kinpui
    Nishida, Kohji
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (01):
  • [27] Biomarkers of retinal vein occlusions defined by deep learning in Optical Coherence Tomography Angiography scans
    Padilla-Pantoja, Fabio Daniel
    Gallego-Suarez, Laura Juliana
    Quijano-Nieto, Bernardo Alfonso
    Perdomo-Charry, Oscar Julian
    Zambrano Perez, Valentina
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [28] Joint Segmentation and Quantification of Chorioretinal Biomarkers in Optical Coherence Tomography Scans: A Deep Learning Approach
    Hassan, Bilal
    Qin, Shiyin
    Hassan, Taimur
    Ahmed, Ramsha
    Werghi, Naoufel
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [29] Denoising of Optical Coherence Tomography Scans via Self-Supervised Deep Learning.
    Li, Shijie
    Alexopoulos, Palaiologos
    Vellappally, Anse
    Schuman, Joel
    Wollstein, Gadi
    Gerig, Guido
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [30] Deep-learning visualization enhancement method for optical coherence tomography angiography in dermatology
    Xu, Jingjiang
    Yuan, Xing
    Huang, Yanping
    Qin, Jia
    Lan, Gongpu
    Qiu, Haixia
    Yu, Bo
    Jia, Haibo
    Tan, Haishu
    Zhao, Shiyong
    Feng, Zhongwu
    An, Lin
    Wei, Xunbin
    JOURNAL OF BIOPHOTONICS, 2023, 16 (10)