Synergistic effect of multi-phase and multi-domain structures induced high energy storage performances under low electric fields in Na0.5Bi0.5TiO3-based lead-free ceramics

被引:18
|
作者
Mao, Pu [1 ]
Guo, Yongguang [1 ]
Lu, Gang [1 ]
Yan, Qingsong [1 ]
Kang, Ruirui [2 ]
Wang, Ting [3 ]
Xie, Bing [4 ]
Liu, Zhiyong [4 ]
Zhang, Lixue [5 ]
机构
[1] Nanchang Hangkong Univ, Sch Aeronaut Mfg Engn, Natl Def Key Lab Light Alloy Proc Sci & Technol, Nanchang 330063, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Peoples R China
[3] Huizhou Univ, Guangdong Prov Key Lab Elect Funct Mat & Devices, Huizhou 516001, Guangdong, Peoples R China
[4] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330603, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
BNT-based ceramics; Phase structure; Polar nanoregions; Low electric fields; Energy storage performances; BREAKDOWN STRENGTH; THERMAL-STABILITY; DENSITY; FERROELECTRICS; EFFICIENCY;
D O I
10.1016/j.cej.2023.144973
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lead-free dielectric ceramics with ultrahigh-power density, fatigue properties, and excellent thermal stability are regarded as potential dielectric energy storage materials for the next-generation advanced pulse power capacitors. However, the large energy storage density (Wrec) and high discharging efficiency (& eta;) of dielectric capacitors are generally achieved under ultrahigh electric fields. Developing dielectric capacitors with high energy storage performances under low electric fields is of great significance. Herein, we utilized a synergistic design strategy of multi-phase and multi-domain structures to successfully synthesize the (0.65-x)(Na0.5Bi0.5)TiO3-0.35(Sr0.7Bi0.2) TiO3-xAg0.97Nd0.01Ta0.2Nb0.8O3 ((0.65-x)BNT-0.35SBT-xANTN) ceramics suitable for the low electric field situation. The formed multi-phase coexistence structure of the Rhombohedral (R3c) and Tetragonal (P4bm) phases and the elevated concentration of Bi3+ at A site in BNT-SBT-ANTN ceramics are beneficial to obtain the high maximum polarization (Pmax). Meanwhile, the introduction of ANTN in the BNT-SBT matrix can disrupt the longrange order ferroelectric domain structures and also form the local polar nanoregions (PNRs), leading to the small remnant polarization (Pr) and the improvement of the relaxation behavior. Encouragingly, the optimized 0.63BNT-0.35SBT-0.02ANTN composition exhibits excellent energy storage performances with a large Wrec of 3.61 J/cm3 and relatively high & eta; of 80.6% at a low electric field of 200 kV/cm. In addition, this 0.63BNT0.35SBT-0.02ANTN sample presents better thermal stability (20-120 celcius) and frequency stability (10-1000 Hz). Moreover, the high charge power density (PD) of 69.42 MW/cm3, the rapid discharge speed rate (& tau;0.9) of 0.22 & mu;s, and the good fatigue endurance are also achieved in the 0.63BNT-0.35SBT-0.02ANTN sample. This work may provide an effective method for designing dielectric ceramics with remarkable comprehensive energy storage performances at low electric fields to meet the requirements of advanced energy storage capacitors under extreme conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Toward high-end lead-free ceramics for energy storage: Na0.5Bi0.5TiO3-based relaxor ferroelectrics with simultaneously enhanced energy density and efficiency
    Yuan, Qibin
    Zhan, Shili
    Li, Yixuan
    Wang, Yifei
    Yang, Haibo
    Zhou, Jia-Jun
    Li, Zhao
    Jing, Hongmei
    Yao, Fang-Zhou
    Lei, Tao
    MATERIALS TODAY ENERGY, 2023, 31
  • [22] Improved dielectric energy storage performance of Na0.5Bi0.5TiO3-based lead-free relaxation ferroelectric ceramics achieved by domain structural regulation and enhanced densification
    Chen, Fukang
    Zhao, Kun
    Jiang, Xintian
    Zeng, Xinyu
    Dong, Jia
    Yu, Kun
    Song, Chunlin
    Yan, Yan
    Jin, Li
    Zhang, Dou
    CERAMICS INTERNATIONAL, 2023, 49 (19) : 31152 - 31162
  • [23] Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems
    Cao, Wenping
    Li, Weili
    Feng, Yu
    Bai, Terigele
    Qiao, Yulong
    Hou, Yafei
    Zhang, Tiandong
    Yu, Yang
    Fei, Weidong
    APPLIED PHYSICS LETTERS, 2016, 108 (20)
  • [24] Ultrahigh energy storage density in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics under moderate electric fields via phase fraction manipulation
    Fan, Jiangtao
    Wang, Linxiang
    Wang, Jiaxing
    Cheng, Zheng
    Zhong, Langxiang
    Yang, Tiantian
    Hu, Zhanggui
    INORGANIC CHEMISTRY FRONTIERS, 2025, 12 (04): : 1444 - 1454
  • [25] Achieving high energy storage density and efficiency in (Na0.5Bi0.5 ) TiO3-based lead-free ceramics
    Wu, Chen
    Qiu, Xiaoming
    Ge, Wenwei
    Tang, Haoyu
    Chen, Luyao
    Liu, Changyi
    Zhao, Hongwei
    Liu, Zhaodong
    Li, Liang
    Fisher, John G.
    CERAMICS INTERNATIONAL, 2024, 50 (15) : 26858 - 26868
  • [26] Superior energy storage properties in lead-free Na0.5Bi0.5TiO3-based relaxor ferroelectric ceramics via compositional tailoring and bandgap engineering
    Niu, Xiang
    Liang, Wei
    Jian, Xiaodong
    Tang, Hui
    Wang, Ting
    Gong, Weiping
    Shi, Hongwei
    Li, Feng
    Zhao, Xiaobo
    Yao, Ying-Bang
    Tao, Tao
    Liang, Bo
    Lu, Sheng-Guo
    SCRIPTA MATERIALIA, 2023, 230
  • [27] Lithium-Induced Phase Transitions in Lead-Free Bi0.5Na0.5TiO3 Based Ceramics
    Viola, Giuseppe
    McKinnon, Ruth
    Koval, Vladimir
    Adomkevicius, Arturas
    Dunn, Steve
    Yan, Haixue
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (16): : 8564 - 8570
  • [28] Enhanced energy storage performance of Na0.5Bi0.5TiO3-based relaxor ferroelectric ceramics by synergistic optimization strategies
    Li, Pengzhen
    Yang, Haibo
    Yuan, Qibin
    Lin, Ying
    MATERIALS TODAY PHYSICS, 2024, 43
  • [29] High Energy Storage Characteristics of (0.5-x)BiFeO3-0.5 Bi0.5Na0.5TiO3-xBaTiO3 Ternary Lead-Free Ferroelectric Ceramics under Low Electric Field
    Gao, Shaowei
    He, Xiang
    Liu, Ying
    V'yunov, Oleg Ivanovich
    Pang, Dongfang
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (09) : 6411 - 6420
  • [30] Optimized energy storage properties of Bi0.5Na0.5TiO3-based lead-free ceramics by composition regulation
    Li, Chaolong
    Wang, Feng
    Wang, Hao
    Wang, Boying
    Sun, Xinru
    Peng, Xingcan
    Li, Weikun
    Diao, Chunli
    Zheng, Haiwu
    CERAMICS INTERNATIONAL, 2024, 50 (11) : 18454 - 18461