Deep Learning-Based Dermoscopic Image Classification System for Robust Skin Lesion Analysis

被引:0
|
作者
Thamizhamuthu, Rajamanickam [1 ]
Maniraj, Subramanian Pitchiah [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Technol, Kattankulathur Campus, Chengalpattu 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Ramapuram Campus, Chennai 600089, Tamil Nadu, India
关键词
image classification system; deep learning; feature extraction; colour moments; local binary pattern; statistical model; TEXTURE MEASURES; MELANOMA; DIAGNOSIS;
D O I
10.18280/ts.400330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a sophisticated dermoscopic image classification system (DICS) leveraging deep learning techniques for accurate skin lesion classification. The DICS comprises four distinct modules: i) Skin Lesion Segmentation (SLS), ii) Feature Extraction (FE), iii) Feature Selection (FS), and iv) Image Classification (IC). The SLS module preprocesses the input dermoscopic image and employs a color k-means clustering approach for segmentation. Subsequently, in the FE module, three types of features are extracted, including 4th order Color Moments (CM), a statistical model based on Generalized Autoregressive Conditional Heteroscedasticity (GARCH), and texture features derived from Local Binary Patterns (LBP). The predominant features are then selected in the FS module using a statistical t-test. Finally, the IC module classifies dermoscopic images as normal or melanoma using a deep learning approach. The DICS demonstrates promising results, achieving 99% and 100% accuracy in normal/abnormal and benign/malignant classifications, respectively, when tested on the PH2 database. This robust classification system has the potential to contribute significantly to the field of dermatological image analysis.
引用
收藏
页码:1145 / 1152
页数:8
相关论文
共 50 条
  • [41] Comparative analysis of deep learning-based pansharpening methods for improved image classification accuracy
    Yilmaz, Volkan
    Asikoglu, Deryanur
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (03)
  • [42] Deep learning-based image forgery detection system
    Suresh, Helina Rajini
    Shanmuganathan, M.
    Senthilkumar, T.
    Vidhyasagar, B. S.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 160 - 172
  • [43] Unifying antimicrobial peptide datasets for robust deep learning-based classification
    Peng, Shuang
    Rajjou, Loic
    DATA IN BRIEF, 2024, 56
  • [44] Melanoma skin cancer detection using deep learning-based lesion segmentation
    Behera N.
    Singh A.P.
    Rout J.K.
    Balabantaray B.K.
    International Journal of Information Technology, 2024, 16 (6) : 3729 - 3744
  • [45] Deep Learning-Based High-Frequency Ultrasound Skin Image Classification with Multicriteria Model Evaluation
    Czajkowska, Joanna
    Badura, Pawel
    Korzekwa, Szymon
    Platkowska-Szczerek, Anna
    Slowinska, Monika
    SENSORS, 2021, 21 (17)
  • [46] Enhancing Skin Disease Diagnosis Through Deep Learning: A Comprehensive Study on Dermoscopic Image Preprocessing and Classification
    Kirgil, Elif Nur Haner
    Erdas, Cagatay Berke
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (04)
  • [47] Image classification and auxiliary diagnosis system for hyperpigmented skin diseases based on deep learning
    Lu, Jianyun
    Tong, Xiaoliang
    Wu, Hongping
    Liu, Yaoxinchuan
    Ouyang, Huidan
    Zeng, Qinghai
    HELIYON, 2023, 9 (09)
  • [48] Robust fusion for skin lesion segmentation of dermoscopic images
    Guo, Qingqing
    Fang, Xianyong
    Wang, Linbo
    Zhang, Enming
    Liu, Zhengyi
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [49] Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
    Hekler, Achim
    Kather, Jakob N.
    Krieghoff-Henning, Eva
    Utikal, Jochen S.
    Meier, Friedegund
    Gellrich, Frank F.
    Belzen, Julius Upmeier Zu
    French, Lars
    Schlager, Justin G.
    Ghoreschi, Kamran
    Wilhelm, Tabea
    Kutzner, Heinz
    Berking, Carola
    Heppt, Markus, V
    Haferkamp, Sebastian
    Sondermann, Wiebke
    Schadendorf, Dirk
    Schilling, Bastian
    Izar, Benjamin
    Maron, Roman
    Schmitt, Max
    Froehling, Stefan
    Lipka, Daniel B.
    Brinker, Titus J.
    FRONTIERS IN MEDICINE, 2020, 7
  • [50] Deep Learning-Based HCS Image Analysis for the Enterprise
    Steigele, Stephan
    Siegismund, Daniel
    Fassler, Matthias
    Kustec, Marusa
    Kappler, Bernd
    Hasaka, Tom
    Yee, Ada
    Brodte, Annette
    Heyse, Stephan
    SLAS DISCOVERY, 2020, 25 (07) : 812 - 821