A Comparative Simulation Study of Classical and Machine Learning Techniques for Forecasting Time Series Data

被引:1
|
作者
Iaousse, Mbarek [1 ]
Jouilil, Youness [2 ]
Bouincha, Mohamed [3 ]
Mentagui, Driss [2 ]
机构
[1] Hassan II Univ Casablanca, Lab C3S, Casablanca, Morocco
[2] Ibn Tofail Univ Kenitra, Fac Sci, Dept Math, Kenitra, Morocco
[3] Mohamed V Univ Rabat, Fac Legal Econ & Social Sci Sale, Rabat, Morocco
关键词
machine learning; time series forecasting; classical approaches; forecasting;
D O I
10.3991/ijoe.v19i08.39853
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This manuscript presents a simulation comparison of statistical classical methods and machine learning algorithms for time series forecasting notably the ARIMA model, K-Nearest Neighbors (KNN), The Support Vector Regression (SVR), and Long-Short Term Memory (LSTM). The performance of the models was evaluated using different metrics especially Mean Squared Error (MSE), Mean Absolute Error (MAE), Median Absolute Error (Median AE), and Root Mean Squared Error (RMSE). The results of the simulations approve that the KNN and LSTM algorithms have better accuracy than the others models' forecasting notably in the medium and long term. Hence, in the medium and long term, ML models are so powerful on big datasets. However, Machine learning architectures outperform ARIMA for shorter-term predictions. Thus, ARIMA is most appropriate in the case of univariate small data sets, where deep learning algorithms are not yet at their best.
引用
下载
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [31] Applied Machine Learning Methods for Time Series Forecasting
    Pang, Linsey
    Liu, Wei
    Wu, Lingfei
    Xie, Kexin
    Guo, Stephen
    Chalapathy, Raghav
    Wen, Musen
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5175 - 5176
  • [32] Forecasting Techniques for Time Series from Sensor Data
    Horelu, Adriana
    Leordeanu, Catalin
    Apostol, Elena
    Huru, Dan
    Mocanu, Mariana
    Cristea, Valentin
    2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 261 - 264
  • [33] Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques
    Kanchymalay, Kasturi
    Salim, N.
    Sukprasert, Anupong
    Krishnan, Ramesh
    Hashim, Ummi Raba'ah
    INTERNATIONAL RESEARCH AND INNOVATION SUMMIT (IRIS2017), 2017, 226
  • [34] Solar Power Prediction in Different Forecasting Horizons Using Machine Learning and Time Series Techniques
    Pun, Kesh
    Basnet, Saurav M. S.
    Jewell, Ward
    2021 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH2021), 2021,
  • [35] Impact of Training and Testing Data Splits on Accuracy of Time Series Forecasting in Machine Learning
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Rashmi, B.
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [36] Integrating Machine Learning and Stochastic Pattern Analysis for the Forecasting of Time-Series Data
    Khan A.B.F.
    Kamalakannan K.
    Ahmed N.S.S.
    SN Computer Science, 4 (5)
  • [37] Comparative Analysis of Supervised Machine Learning Techniques for Sales Forecasting
    Raizada, Stuti
    Saini, Jatinderkumar R.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (11) : 102 - 110
  • [38] Nonparametric forecasting in time series -: A comparative study
    Vilar-Fernandez, Juan M.
    Cao, Ricardo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2007, 36 (02) : 311 - 334
  • [39] Time-series prediction and forecasting of ambient noise levels using deep learning and machine learning techniques
    Tiwari, S. K.
    Kumaraswamidhas, L. A.
    Garg, N.
    NOISE CONTROL ENGINEERING JOURNAL, 2022, 70 (05) : 456 - 471
  • [40] Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
    Barrera-Animas, Ari Yair
    Oyedele, Lukumon O.
    Bilal, Muhammad
    Akinosho, Taofeek Dolapo
    Delgado, Juan Manuel Davila
    Akanbi, Lukman Adewale
    MACHINE LEARNING WITH APPLICATIONS, 2022, 7