B-spline quarklets and biorthogonal multiwavelets

被引:2
|
作者
Hovemann, Marc [1 ]
Kopsch, Anne [1 ]
Raasch, Thorsten [2 ]
Vogel, Dorian [1 ]
机构
[1] Philipps Univ Marburg, Dept Math & Comp Sci, Hans Meerwein Str 6, D-35043 Marburg, Germany
[2] Univ Siegen, Dept Math, Walter Flex Str 3, D-57068 Siegen, Germany
关键词
B-spline quarks; quarklets; biorthogonal CDF-wavelets; biorthogonal multiwavelets; multiresolution analysis; perfect reconstruction condition; CONSTRUCTION; BASES;
D O I
10.1142/S0219691323500297
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we show that B-spline quarks and the associated quarklets fit into the theory of biorthogonal multiwavelets. Quark vectors are used to define sequences of subspaces V-p,V- j of L-2(R) which fulfill almost all conditions of a multiresolution analysis. Under some special conditions on the parameters, they even satisfy all those properties. Moreover, we prove that quarks and quarklets possess modulation matrices which fulfill the perfect reconstruction condition. Furthermore, we show the existence of generalized dual quarks and quarklets which are known to be at least compactly supported tempered distributions from S' (R). Finally, we also verify that quarks and quarklets can be used to define sequences of subspaces W-p,W- j of L-2(R) that yield non-orthogonal decompositions of L-2(R).
引用
收藏
页数:40
相关论文
共 50 条
  • [31] On the positivity of B-spline Wronskians
    Floater, Michael S.
    CALCOLO, 2024, 61 (03)
  • [32] MULTIRESOLUTION B-SPLINE RADIOSITY
    YU, YZ
    PENG, QS
    COMPUTER GRAPHICS FORUM, 1995, 14 (03) : C285 - &
  • [33] Regularization of B-spline objects
    Xu, Guoliang
    Bajaj, Chandrajit
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (01) : 38 - 49
  • [34] NUAT B-spline curves
    Wang, GZ
    Chen, QY
    Zhou, MH
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (02) : 193 - 205
  • [35] Hierarchical B-spline refinement
    Forsey, David R.
    Bartels, Richard H.
    Computer Graphics (ACM), 1988, 22 (04): : 205 - 212
  • [36] CALCULATING OF B-SPLINE CURVES
    BOHM, W
    COMPUTING, 1977, 18 (02) : 161 - 166
  • [37] Monotone B-spline smoothing
    He, XM
    Shi, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) : 643 - 650
  • [38] ON A BIVARIATE B-SPLINE BASIS
    CHUI, CK
    WANG, RH
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1984, 27 (11): : 1129 - 1142
  • [39] Successive Projection with B-spline
    Ueda, Yuki
    Saito, Norikazu
    INFORMATION TECHNOLOGY: NEW GENERATIONS, 2016, 448 : 917 - 928
  • [40] The redefinition of B-spline curve
    Hyung Bae Jung
    Kwangsoo Kim
    The International Journal of Advanced Manufacturing Technology, 2011, 57 : 265 - 270