Changes in Soil Microbial Community during Permafrost Collapse Process on the Northeast Qinghai-Tibetan Plateau, China

被引:0
|
作者
Hu, Xia [1 ,2 ]
Yang, Zhi-Guang [1 ,2 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil microbial communities; Permafrost collapse; Phospholipid fatty acids (PLFAs); Qinghai-Tibet Plateau; CLIMATE-CHANGE; THERMOKARST LAKES; THAW SLUMPS; FATTY-ACIDS; CARBON; BACTERIAL; PATTERNS; FUNGAL; ALPINE; SHIFTS;
D O I
10.1007/s42729-023-01332-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Due to ongoing climate change, permafrost collapse has become widely distributed across the Qinghai-Tibet Plateau (QTP). However, it is not yet understood how soil microbial composition changes after the development of permafrost collapse. In this study, evaluations were conducted on three stages (the collapsed areas, the collapsing area and the control areas) of the permafrost collapse. The composition and biomass of the soil microorganisms were quantified by the phospholipid fatty acid (PLFA) method. The results showed that the permafrost collapse stages affected the soil microbial communities. The PCA suggested that the soil microbial communities were separated into 3 groups, i.e., the control areas, collapsing areas and collapsed areas. The contents of total PLFAs, gram-negative (GN) bacteria, total bacteria and fungi in the collapsed areas and the collapsing areas were significantly lower than those in the control areas. Soils in the collapsing areas had higher abundance of GN bacteria, total bacteria, total PLFAs and gram-positive bacteria to gram-negative (GP/GN) ratio than those in the collapsed areas. The collapsed areas had a higher ratio of GP/GN among the three stages. The soil microbial communities did not change significantly with increasing soil depth. The contents of GN bacteria, actinomycetes and total PLFAs had a significant positive correlation with pH. The contents of GP bacteria and the GP/GN ratio were positively correlated with soil water content (SWC). Soil microbial biomass decreased significantly during the permafrost collapse development. The inherent characteristics of soil physicochemical properties, especially soil pH and SWC, are the main factors affecting changes in microbial communities after the development of permafrost collapse.
引用
收藏
页码:4157 / 4167
页数:11
相关论文
共 50 条
  • [41] Mapping risk of plague in Qinghai-Tibetan Plateau, China
    Qian, Quan
    Zhao, Jian
    Fang, Liqun
    Zhou, Hang
    Zhang, Wenyi
    Wei, Lan
    Yang, Hong
    Yin, Wenwu
    Cao, Wuchun
    Li, Qun
    BMC INFECTIOUS DISEASES, 2014, 14
  • [42] Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China
    Cungui Zhang
    Yanjun Shen
    Fenggui Liu
    Lei Meng
    Theoretical and Applied Climatology, 2016, 123 : 107 - 115
  • [43] Changes in reference evapotranspiration over an agricultural region in the Qinghai-Tibetan plateau, China
    Zhang, Cungui
    Shen, Yanjun
    Liu, Fenggui
    Meng, Lei
    THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 123 (1-2) : 107 - 115
  • [44] Chuzan Virus in Yaks, Qinghai-Tibetan Plateau, China
    Wang, Meng
    Wang, Yun
    Baloch, Abdul Rasheed
    Pan, Yangyang
    Tian, Lili
    Xu, Fang
    Chen, Shaobo
    Zeng, Qiaoying
    EMERGING INFECTIOUS DISEASES, 2018, 24 (12) : 2371 - 2373
  • [45] Soil water content in permafrost regions exhibited smaller interannual changes than non-permafrost regions during 1986-2016 on the Qinghai-Tibetan Plateau
    Liu, Guimin
    Wu, Xiaoli
    Zhao, Lin
    Wu, Tonghua
    Hu, Guojie
    Li, Ren
    Qiao, Yongping
    Wu, Xiaodong
    CATENA, 2021, 207
  • [46] Grassland changes and adaptive management on the Qinghai-Tibetan Plateau
    Wang, Yanfen
    Lv, Wangwang
    Xue, Kai
    Wang, Shiping
    Zhang, Lirong
    Hu, Ronghai
    Zeng, Hong
    Xu, Xingliang
    Li, Yaoming
    Jiang, Lili
    Hao, Yanbin
    Du, Jianqing
    Sun, Jianping
    Dorji, Tsechoe
    Piao, Shilong
    Wang, Changhui
    Luo, Caiyun
    Zhang, Zhenhua
    Chang, Xiaofeng
    Zhang, Mingming
    Hu, Yigang
    Wu, Tonghua
    Wang, Jinzhi
    Li, Bowen
    Liu, Peipei
    Zhou, Yang
    Wang, A.
    Dong, Shikui
    Zhang, Xianzhou
    Gao, Qingzhu
    Zhou, Huakun
    Shen, Miaogen
    Wilkes, Andreas
    Miehe, Georg
    Zhao, Xinquan
    Niu, Haishan
    NATURE REVIEWS EARTH & ENVIRONMENT, 2022, 3 (10) : 668 - 683
  • [47] Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau
    Zhou, Guanghao
    Liu, Wenhui
    Xie, Changwei
    Song, Xianteng
    Zhang, Qi
    Li, Qingpeng
    Liu, Guangyue
    Li, Qing
    Luo, Bingnan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] Grazing Changed Plant Community Composition and Reduced Stochasticity of Soil Microbial Community Assembly of Alpine Grasslands on the Qinghai-Tibetan Plateau
    Li, Yu
    Dong, Shikui
    Gao, Qingzhu
    Fan, Chun
    Fayiah, Moses
    Ganjurjav, Hasbagan
    Hu, Guozheng
    Wang, Xuexia
    Yan, Yulong
    Gao, Xiaoxia
    Li, Shuai
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [49] Microbial Succession in Response to Salinity in the Sediments of Lakes on the Northeastern Qinghai-Tibetan Plateau,China
    YANG Jian
    JIANG Hongchen
    DONG Hailiang
    MA Li'an
    WU Liyou
    ZHOU Jizhong
    Acta Geologica Sinica(English Edition), 2014, (S1) : 119 - 119
  • [50] Microbial diversity in two cold springs on the Qinghai-Tibetan Plateau
    Gaoyuan Li~a
    Geoscience Frontiers, 2012, (03) : 317 - 325