LOCAL STATISTICS FOR ZEROS OF ARTIN-SCHREIER L-FUNCTIONS

被引:2
|
作者
Entin, Alexei
Pirani, Noam
机构
基金
以色列科学基金会;
关键词
DIRICHLET L-FUNCTIONS; HIGH POWERS; FROBENIUS CLASS; TRACES; CURVES; PRODUCTS; POINT;
D O I
10.1090/tran/8850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local statistics of zeros of L-functions attached to Artin-Scheier curves over finite fields. We consider three families of ArtinSchreier L-functions: the ordinary, polynomial (the p-rank 0 stratum) and odd-polynomial families. We compute the 1-level zero-density of the first and third families and the 2-level density of the second family for test functions with Fourier transform supported in a suitable interval. In each case we obtain agreement with a unitary or symplectic random matrix model.
引用
收藏
页码:6141 / 6175
页数:35
相关论文
共 50 条
  • [21] AN APPLICATION OF THE ARTIN-SCHREIER THEOREM
    ISAACS, IM
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (03): : 277 - 278
  • [22] Zeta Functions of a Class of Artin-Schreier Curves with Many Automorphisms
    Bouw, Irene
    Ho, Wei
    Malmskog, Beth
    Scheidler, Renate
    Srinivasan, Padmavathi
    Vincent, Christelle
    DIRECTIONS IN NUMBER THEORY, 2016, 3 : 87 - 124
  • [23] Zeta functions of quadratic Artin-Schreier curves in characteristic two
    Blache, Regis
    Pierre, Timothe
    ACTA ARITHMETICA, 2023, 207 (01) : 39 - 56
  • [24] ARTIN-SCHREIER EQUATIONS IN CHARACTERISTIC ZERO
    MACKENZIE, RE
    WHAPLES, G
    AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (03) : 473 - 485
  • [25] Divisibility of L-polynomials for a family of Artin-Schreier curves
    McGuire, Gary
    Yilmaz, Emrah Sercan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (08) : 3341 - 3358
  • [26] The genus fields of Artin-Schreier extensions
    Hu, Su
    Li, Yan
    FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (04) : 255 - 264
  • [27] PROJECTIVE NORMALIY OF ARTIN-SCHREIER CURVES
    Ballico, Edoardo
    Ravagnani, Alberto
    MATEMATICHE, 2013, 68 (02): : 91 - 98
  • [28] EXTENDED ARTIN-SCHREIER THEORY OF FIELDS
    BECKER, E
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (04) : 881 - 897
  • [29] SOME ARTIN-SCHREIER TOWERS ARE EASY
    Garcia, Arnaldo
    Stichtenoth, Henning
    MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) : 767 - 774
  • [30] Jacobians of quotients of Artin-Schreier curves
    Pries, RJ
    Recent Progress in Arithmetic and Algebraic Geometry, 2005, 386 : 145 - 156